On the Evaluation of Expected Penalties at Claim Instants That Cause Ruin in the Classical Risk Model



Classical risk model Finite-time ruin probability Surplus before ruin Deficit after ruin Expected penalty function. 

AMS 2000 Subject Classification

Primary 90B70 62E99 Secondary 91D35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author would like to thank two anonymous reviewers for their constructive comments for improving the paper and Dr. Shuanming Li for insightful discussions on the topic. This research was supported by the Natural Science and Engineering Research Council (NSERC) of Canada.


  1. Avram F, Usábel M (2003) Finite time ruin probabilities with one Laplace inversion. Insur Math Econ 32:371–377CrossRefMathSciNetMATHGoogle Scholar
  2. Avram F, Usábel M (2004) Ruin probabilities and deficit for the renewal risk model with phase-type interarrival times. ASTIN Bull 34:245–254CrossRefMathSciNetMATHGoogle Scholar
  3. De Vylder FE, Goovaerts MJ (1999) Explicit finite-time and infinite-time ruin probabilities in the continuous case. Insur Math Econ 24:155–172CrossRefMathSciNetMATHGoogle Scholar
  4. Dickson DCM (1999) On numerical evaluation of finite time survival probabilities. r Actuar J 5:575–584CrossRefGoogle Scholar
  5. Dickson DCM (2012) The joint distribution of the time to ruin and the number of claims until ruin in the classical risk model. Insur Math Econ 50(3):334–337CrossRefMathSciNetMATHGoogle Scholar
  6. Dickson DCM, Hipp C (2001) On the time to ruin for Erlang(2) risk process. Insur Math Econ 29(3):333–344CrossRefMathSciNetMATHGoogle Scholar
  7. Dickson DCM, Waters HR (1991) Recursive calculation of survival probabilities. ASTIN Bull 21(2):199–221CrossRefGoogle Scholar
  8. Egidio dos Reis AD (2002) How many claims does it take to get ruined and recovered? Insur Math Econ 31(2):235–248CrossRefMathSciNetMATHGoogle Scholar
  9. Garcia JMA (2005) Explicit solutions for survival probabilities in the classical risk model. ASTIN Bull 35(1):113–130CrossRefMathSciNetMATHGoogle Scholar
  10. Gerber HU (1979) An introduction to mathematical risk theory. S.S. Huebner Foundation Monographs, University of PennsylvaniaGoogle Scholar
  11. Gerber HU, Shiu ESW (1998) On the time value of ruin. North American Actuar J 2(1):48–72CrossRefMathSciNetMATHGoogle Scholar
  12. Gerber HU, Shiu ESW (2005) The time value of ruin in a Sparre Andersen model. North American Actuar J 9(2):49–69CrossRefMathSciNetMATHGoogle Scholar
  13. Landriault D, Shi T, Willmot GE (2011) Joint densities involving the time to ruin in the Sparre Andersen risk model under exponential assumptions. Insur Math Econ 49(3):371–379CrossRefMathSciNetMATHGoogle Scholar
  14. Lefèvre C, Loisel S (2008) On finite-time ruin probabilities for classical risk models. Scand Actuar J 1:41–60CrossRefMathSciNetMATHGoogle Scholar
  15. Li S, Garrido J (2004) On ruin for the Erlang(n) risk process. Insur Math Econ 34(3):391–408CrossRefMathSciNetMATHGoogle Scholar
  16. McCurdy A, Ng KC, Parlett BN (1984) Accurate computation of divided differences of the exponential function. Math Computat 43(168):501–528CrossRefMathSciNetMATHGoogle Scholar
  17. Picard P, Lefèvre C (1997) The probability of ruin in finite-time with discrete claim size distribution. Scand Actuar J 1:58–69CrossRefMathSciNetMATHGoogle Scholar
  18. Rolski T, Schmidli H, Schmidt V, Teugels J (1999) Stochastic processes for insurance and finance. Wiley, ChichesterCrossRefMATHGoogle Scholar
  19. Stanford DA, Stroïnski KJ (1994) Recursive methods for computing finite-time ruin probabilities for phase-distributed claim sizes. ASTIN Bull 24(2):235–254CrossRefGoogle Scholar
  20. Stanford DA, Stroïnski KJ, Lee K (2000) Ruin probabilities based at claim instants for some non-Poisson claim processes. Insur Math Econ 26(2–3):251–267CrossRefMathSciNetMATHGoogle Scholar
  21. Willmot GE (2007) On the discounted penalty function in the renewal risk model with general interclaim times. Insur Math Econ 41(1):17–31CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Statistics & Actuarial ScienceSimon Fraser UniversityBurnabyCanada

Personalised recommendations