On First Hitting Times for Skew CIR Processes

  • Shiyu Song
  • Guangli Xu
  • Yongjin Wang


In this work, the first hitting times for skew CIR processes are investigated. We compute the Laplace transforms and the means of the first hitting times of some given levels. The solutions for Laplace transforms are in terms of Tricomi and Kummer confluent hypergeometric functions. We also exhibit the hitting time densities numerically at the end of this paper.


Skew CIR process First hitting times 

Mathematics Subject Classification (2010)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abundo M (2009) First-passage problems for asymmetric diffusions and skew-diffusion processes. Open Syst Inf Dyn 16:325–350CrossRefMathSciNetMATHGoogle Scholar
  2. Appuhamillage T A, Bokil V A, Thomann E, Waymire E, Wood B D (2010) Solute transport across an interface: a fickian theory for skewness in breakthrough curves. Water Resour Res 46:13ppGoogle Scholar
  3. Appuhamillage T, Sheldon D (2012) First passage time of skew Brownian motion. J Appl Probab 49:685–696CrossRefMathSciNetMATHGoogle Scholar
  4. Barlow M T (1988) Skew Brownian motion and a one dimensional stochastic differential equation. Stochastics 25:1–2CrossRefMathSciNetMATHGoogle Scholar
  5. Borodin A N, Salminen P (2002) Handbook of Brownian motion: facts and formulae. Birkhäuser, BaselCrossRefMATHGoogle Scholar
  6. Buchholz H, Lichtblau H, Wetzel K (1969) The confluent hypergeometric function: with special emphasis on its applications. Springer, BerlinCrossRefGoogle Scholar
  7. Chou C S, Lin H J (2006) Some properties of CIR processes. Stochast Anal Appl 24:901–912CrossRefMathSciNetMATHGoogle Scholar
  8. Chuancun Y, Huiqing W (2012) The first passage time and the dividend value function for one-dimensional diffusion processes between two reflecting barriers. Int J Stochast Anal 2012:1–15MathSciNetMATHGoogle Scholar
  9. Engelbert HJ, Schmidt W (1991) Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations (Part III). Mathematische Nachrichten 151:149–197CrossRefMathSciNetMATHGoogle Scholar
  10. Freidlin M I, Wentzell A D (1993) Diffusion processes on graphs and the averaging principle. Ann Probab 21:2215–2245CrossRefMathSciNetMATHGoogle Scholar
  11. Harrison J M, Shepp L A (1981) On skew Brownian motion. Ann Probab 9:309–313CrossRefMathSciNetMATHGoogle Scholar
  12. Karlin S, Taylor H M (1981) A second course in stochastic processes. Academic Press, New YorkMATHGoogle Scholar
  13. Lang R (1995) Effective conductivity and skew Brownian motion. J Stat Phys 80:125–146CrossRefMathSciNetMATHGoogle Scholar
  14. Le Gall JF (1983) Temps locaux et equations différentielles stochastiques, vol 986. Springer, BerlinGoogle Scholar
  15. Portenko N I (2000) A probabilistic representation for the solution of one problem of mathematical physics. Ukr Math J 52:1457–1469CrossRefMathSciNetGoogle Scholar
  16. Protter P (2004) Stochastic integration and differential equations. Springer, New YorkMATHGoogle Scholar
  17. Ramirez J M, Thomann E A, Waymire E C, Haggerty R, Wood B (2006) A generalized Taylor-Aris formula and skew diffusion. Multiscale Model Simul 5:786–801CrossRefMathSciNetMATHGoogle Scholar
  18. Trutnau G (2010) Weak existence of the squared Bessel and CIR processes with skew reflection on a deterministic time-dependent curve. Stochast Process Appl 120:381–402CrossRefMathSciNetMATHGoogle Scholar
  19. Trutnau G (2011) Pathwise uniqueness of the squared Bessel and CIR processes with skew reflection on a deterministic time dependent curve. Stochast Process Appl 121:1845–1863CrossRefMathSciNetMATHGoogle Scholar
  20. Valko P P, Abate J (2004) Comparison of sequence accelerators forthe Gaver method of numerical Laplace transform inversion. Comput Math Appl 48:629–636CrossRefMathSciNetMATHGoogle Scholar
  21. Walsh J B (1978) A diffusion with a discontinuous local time. Astérisque 52:37–45Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Mathematical SciencesNankai UniversityTianjinPeople’s Republic of China

Personalised recommendations