Sequential Maximum Likelihood Estimation for the Hyperbolic Diffusion Process

  • Nenghui Kuang
  • Huantian Xie


This paper investigates the properties of a sequential maximum likelihood estimator (SMLE) of the unknown parameter for the hyperbolic diffusion process. We derive the explicit formulas for the sequential estimator and its mean squared error (MSE). The estimator is proved to be closed, unbiased, normally distributed and strongly consistent. Finally a simulation study is presented to illustrate the efficiency of the estimator.


Sequential maximum likelihood estimator Hyperbolic diffusion process Unbiasedness Mean squared error Efficiency 

AMS 2000 Subject Classifications

60H10 62F99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anscombe FJ (1952) Large-sample theory of sequential estimation. Proc Cambridge Philos Soc 48:600–607CrossRefMATHMathSciNetGoogle Scholar
  2. Bibby BM, Sørensen M (1995) Martingale estimation functions for discretely observed diffusion processes. Bernoulli 1:17–39CrossRefMATHMathSciNetGoogle Scholar
  3. Bibby BM, Sørensen M (1996) A hyperbolic diffusion model for stock prices. Finance Stoch 1(1):25–41CrossRefGoogle Scholar
  4. Bishwal JPN (2008) Parameter estimation in stochastic differential equations. In: Lecture notes in mathematics, vol 1923. SpringerGoogle Scholar
  5. Bo LJ, Yang XW (2012) Sequential maximum likelihood estimation for reflected generalized Ornstein-Uhlenbeck processes. Statist Probab Lett 82:1374–1382CrossRefMATHMathSciNetGoogle Scholar
  6. Eberlein E, Keller U (1995) Hyperbolic distributions in finance. Bernoulli 1:281–299CrossRefMATHGoogle Scholar
  7. Gregorio AD, Iacus SM (2009) On Rényi information for ergodic diffusion processes. Inform Sci 179:279–291CrossRefMATHMathSciNetGoogle Scholar
  8. Karatzas I, Shreve S (1991) Brownian motion and stochastic calculus. Springer, New YorkMATHGoogle Scholar
  9. Lai TL, Siegmund D (1983) Fixed accuracy estimation of an autoregressive parameter. Ann Statist 11:478–485CrossRefMATHMathSciNetGoogle Scholar
  10. Lee C, Bishwal JPN, Lee MH (2012) Sequential maximum likelihood estimation for reflected Ornstein-Uhlenbeck processes. J Statist Plann Inference 142:1234–1242CrossRefMATHMathSciNetGoogle Scholar
  11. Liptser RS, Shiryaev AN (2001) Statistics of random processes II. Applications. Springer, BerlinCrossRefGoogle Scholar
  12. Novikov AA (1972) Sequential estimation of the parameters of processes of diffusion type. Mat Zametki 12:627–638MATHMathSciNetGoogle Scholar
  13. Rydberg TH (1999) Generalized hyperbolic diffusion processes with applications in finance. Math Finance 9(2):183–201CrossRefMATHMathSciNetGoogle Scholar
  14. Tse YK, Zhang X, Yu J (2004) Estimation of hyperbolic diffusion using the Markov chain Monte Carlo method. Quant Finance 4(2):158–169CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Mathematics and Computing ScienceHunan University of Science and TechnologyXiangtanPeople’s Republic of China
  2. 2.School of Mathematics and StatisticsWuhan UniversityWuhanPeople’s Republic of China
  3. 3.School of ScienceLinyi UniversityLinyiPeople’s Republic of China

Personalised recommendations