Advertisement

Omnibus Sequences, Coupon Collection, and Missing Word Counts

  • Sunil Abraham
  • Greg Brockman
  • Stephanie Sapp
  • Anant P. Godbole
Article

Abstract

In this paper, we study the properties of k-omnisequences of length n, defined to be strings of length n that contain all strings of smaller length k embedded as (not necessarily contiguous) subsequences. We start by proving an elementary result that relates our problem to the classical coupon collector problem. After a short survey of relevant results in coupon collection, we focus our attention on the number M of strings (or words) of length k that are not found as subsequences of an n string, showing that there is a gap between the probability threshold for the emergence of an omnisequence and the zero-infinity threshold for \({\mathbb E}(M)\).

Keywords

Coupon collection Omnibus sequences Extreme value distribution 

AMS 2000 Subject Classification

60C05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler I, Ross S (2001) The coupon subset collection problem. J Appl Probab 38:737–746MathSciNetMATHCrossRefGoogle Scholar
  2. Adler I, Oren S, Ross S (2003) The coupon collector’s problem revisited. J Appl Probab 40:513–518MathSciNetMATHCrossRefGoogle Scholar
  3. Aldous D (1989) Probability approximations via the poisson clumping heuristic. Springer, New YorkMATHCrossRefGoogle Scholar
  4. Badus A, Godbole A, LeDell E, Lents N (2003) Some contributions to the coupon collector problem. In: Extended abstract, 2003 permutation patterns conference, Dunedin, New Zealand. Manuscript in preparationGoogle Scholar
  5. Barbour A, Holst L (1989) Some applications of the Stein–Chen method for proving Poisson convergence. Adv Appl Probab 21:74–90MathSciNetMATHCrossRefGoogle Scholar
  6. Barbour A, Holst L, Janson S (1992) Poisson approximation. Oxford University Press, New YorkMATHGoogle Scholar
  7. Erdős P, Rényi A (1961) On a classical problem of probability theory. Magy Tud Akad Mat Kut Intez Közl 6:215–220Google Scholar
  8. Feller W (1968) An introduction to probability theory and its applications, vol 1. Wiley, New YorkGoogle Scholar
  9. Flajolet P, Sedgewick R (2009) Analytic combinatorics. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  10. Foata D, Zeilberger D (2003) The collector’s brotherhood problem using the Newman–Shepp symbolic method. Algebra Univers 49:387–395MathSciNetMATHCrossRefGoogle Scholar
  11. Foata D, Han GN, Lass B (2001) Les nombres hyperharmoniques et la fratrie du collectionneur de vignettes. Sém Lothar Combin 47:B47a. http://www.combinatorics.org/Volume_15/PDF/v15i1n31.pdf MathSciNetGoogle Scholar
  12. Gould HW (1972) Combinatorial identities. Morgantown, WVGoogle Scholar
  13. Holst L (1986) On birthday, collectors. Occupancy and other classical urn problems. Int Stat Rev 54:15–27MathSciNetMATHCrossRefGoogle Scholar
  14. Kendall M, Smith BB (1938) Randomness and random sampling numbers. J R Stat Soc 101:147–166CrossRefGoogle Scholar
  15. Kuonen D (2001) Computer-intensive statistical methods: saddlepoint approximations with applications in bootstrap and robust inference. Doctoral dissertation, École Polytechnique Fédérale, LausanneGoogle Scholar
  16. Martinez S (2004) Some bounds on the coupon collector problem. Random Struct Algorithms 25:208–226MATHCrossRefGoogle Scholar
  17. May R (2008) Coupon collecting with quotas. Electron J Comb 15(31)Google Scholar
  18. Myers A, Wilf H (2003) Some new aspects of the coupon collector’s problem. SIAM J Discrete Math 17:1–17MathSciNetMATHCrossRefGoogle Scholar
  19. Nadarajah S (2008) Exact distribution of the linear combination of p Gumbel random variables. Int J Comp Math 85:1355–1362MATHCrossRefGoogle Scholar
  20. Neal P (2008) The generalised coupon collector problem. J Appl Probab 45:621–629MathSciNetMATHCrossRefGoogle Scholar
  21. Newman D, Shepp L (1960) The double dixie cup problem. Am Math Mon 67:58–61MathSciNetMATHCrossRefGoogle Scholar
  22. Steele J (1997) Probability theory and combinatorial optimization. SIAM, PhiladelphiaMATHCrossRefGoogle Scholar
  23. Von Schelling H (1954) Coupon collecting for unequal probabilities. Am Math Mon 61:306–311MATHCrossRefGoogle Scholar
  24. Zeilberger D (2001) How many singles, doubles, triples, etc. should the coupon collector expect? http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/coupon.pdf. Accessed 16 Aug 2011

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sunil Abraham
    • 1
  • Greg Brockman
    • 2
  • Stephanie Sapp
    • 3
  • Anant P. Godbole
    • 4
  1. 1.Oxford UniversityOxfordUK
  2. 2.Massachusetts Institute of TechnologyCambridgeUSA
  3. 3.University of CaliforniaBerkeleyUSA
  4. 4.East Tennessee State UniversityJohnson CityUSA

Personalised recommendations