Population Monte Carlo Algorithm in High Dimensions



The population Monte Carlo algorithm is an iterative importance sampling scheme for solving static problems. We examine the population Monte Carlo algorithm in a simplified setting, a single step of the general algorithm, and study a fundamental problem that occurs in applying importance sampling to high-dimensional problem. The precision of the computed estimate from the simplified setting is measured by the asymptotic variance of estimate under conditions on the importance function. We demonstrate the exponential growth of the asymptotic variance with the dimension and show that the optimal covariance matrix for the importance function can be estimated in special cases.


Asymptotic variance of estimate Central limit theorem Importance sampling Markov chain Monte Carlo Population Monte Carlo 

AMS 2000 Subject Classifications

65C05 65C60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cappé O, Guillin A, Marin J-M, Robert C P (2004) Population Monte Carlo. J Comput Graph Stat 13(4):907–929CrossRefGoogle Scholar
  2. Chopin N (2004) Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. Ann Stat 32(6):2385–2411CrossRefMATHMathSciNetGoogle Scholar
  3. Douc R, Guillin A, Marin J-M, Robert CP (2007a) Convergence of adaptive sampling schemes. Ann Stat 35(1)Google Scholar
  4. Douc R, Guillin A, Marin J-M, Robert CP (2007b) Minimum variance importance sampling via Population Monte Carlo. ESAIM, Probab Stat 11:427–447CrossRefMATHMathSciNetGoogle Scholar
  5. Gelman A, Carlin J B, Ster HS, Rubin DB (1995) Bayesian data analysis. Chapman & Hall, LondonGoogle Scholar
  6. Goldon N, Salmon D, Smith A (1993) Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE Proc-F 140(2):107–113Google Scholar
  7. Horn R, Johnson C (1985) Matrix analysis. Cambridge University Press, CambridgeMATHGoogle Scholar
  8. Li B, Bengtsson T, Bickel P (2005) Curse-of-dimensionality revisited: collapse of importance sampling in very large scale systems. Technical report 696, Department of Statistics, UC-BerkeleyGoogle Scholar
  9. Liu J (2001) Monte Carlo strategies in scientific computing. Springer series in statistics. Spring, New YorkMATHGoogle Scholar
  10. Liu J, Chen R (1998) Sequential Monte Carlo methods for dynamic systems. J Am Stat Assoc 93(443):1032–1044CrossRefMATHGoogle Scholar
  11. Neal P, Roberts G (2008) Optimal scaling for random walk Metropolis on spherically constrained target densities. Methodol Comput Appl Probab 10(2):277–297CrossRefMATHMathSciNetGoogle Scholar
  12. Pitt M, Shepard N (1999) Filtering via simulation: auxilliary particle filters. J Am Stat Assoc 94(446):590–599CrossRefMATHGoogle Scholar
  13. Roberts GO, Rosenthal J (2006) Examples of adaptive MCMC. Technical report, Lancaster UniversityGoogle Scholar
  14. Roberts GO, Rosenthal JS (2001) Optimal scaling for various Metropolis-Hastings algorithms. Stat Sci 16(4):351–367CrossRefMATHMathSciNetGoogle Scholar
  15. Roberts GO, Gelman WR, Gilks A (1997) Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann Appl Probab 7(1):110–120CrossRefMATHMathSciNetGoogle Scholar
  16. Rubinstein R (1981) Simulation and the Monte Carlo Method. Wiley, New YorkCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jeong Eun Lee
    • 1
  • Ross McVinish
    • 2
  • Kerrie Mengersen
    • 1
  1. 1.School of Mathematical SciencesQueensland University of TechnologyBrisbaneAustralia
  2. 2.Department of MathematicsThe University of QueenslandBrisbaneAustralia

Personalised recommendations