Molecular Biology

, Volume 39, Issue 6, pp 876–883 | Cite as

Arrangement of the Template 3′ of the A-Site Codon on the Human 80S Ribosome

  • M. V. Molotkov
  • D. M. Graifer
  • N. A. Demeshkina
  • M. N. Repkova
  • A. G. Ven'yaminova
  • G. G. Karpova
Molecular Mechanisms of Biological Processes


The arrangement of the template sequence 3′ of the A-site codon on the 80S ribosome was studied using mRNA analogs containing Phe codon UUU at the 5′ end and a photoreactive perfluoroarylazido group linked to C5 of U or N7 of G. The analogs were positioned on the ribosome with the use of tRNAPhe, which directed the UUU codon to the P site, bringing a modified nucleotide to position +9 or +12 relative to the first nucleotide of the P-site codon. Upon mild UV irradiation of ribosome complexes, the analogs of both types crosslinked to the 18S rRNA and proteins of the 40S subunit. Comparisons were made with the crosslinking patterns of complexes in which an mRNA analog contained a modified nucleotide in position +7 (the crosslinking to 18S rRNA in such complexes has been studied previously). The efficiency of crosslinking to ribosomal components depended on the nature of the modified nucleotide of an mRNA analog and its position on the ribosome. The extent of crosslinking to the 18S rRNA drastically decreased as the modified nucleotide was transferred from position +7 to position +12. The 18S rRNA nucleotides involved in crosslinking were identified. A modified nucleotide in position +9 crosslinked to the invariant dinucleotide A1824/A1825 and variable A1823 in the 3′ minidomain of the 18S rRNA and to S15. The same ribosomal components have earlier been shown to crosslink to modified nucleotides in positions +4 to +7. In addition, all mRNA analogs crosslinked to invariant C1698 in the 3′ minidomain and to conserved region 605–620, which closes helix 18 in the 5′ domain.

Key words

eukaryotes 80S ribosome photocrosslinks mRNA analog rRNA ribosomal protein S15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sergiev P.V., Dontsova O.A., Bogdanov A.A. 2001. Studying the structure of the prokaryotic ribosome by biochemical methods: The Judgment Day. Mol. Biol. 35, 559–583.CrossRefGoogle Scholar
  2. 2.
    Yusupova G.Zh., Yusupov M.M., Cate J.H.D., Noller H.F. 2001. The path of messenger RNA through the ribosome. Cell. 106, 233–241.PubMedCrossRefGoogle Scholar
  3. 3.
    Ogle J.M., Brodersen D.E., Clemons W.M., Tarry M.J., Carter A.P., Ramakrishnan V. 2001. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science. 292, 897–902.PubMedCrossRefGoogle Scholar
  4. 4.
    Ramakrishnan V. 2002. Ribosome structure and the mechanism of translation. Cell. 108, 557–572.PubMedCrossRefGoogle Scholar
  5. 5.
    Graifer D.M., Karpova G.G. 2001. Structutal-functional topography of human ribosomes as inferred from data on crosslinking with oligoribonucleotide-derived mRNA analogs. Mol. Biol. 35, 584–596.CrossRefGoogle Scholar
  6. 6.
    Demeshkina N., Repkova M., Ven'yaminova A., Graifer D., Karpova G. 2000. Nucleotides of 18S rRNA surrounding mRNA codons at the human ribosomal A, P and E sites, respectively: A crosslinking study with mRNA analogues carrying aryl azide group at either the uracil or the guanine residue. RNA. 6, 1727–1736.PubMedCrossRefGoogle Scholar
  7. 7.
    Demeshkina N., Laletina E., Meschaninova M., Ven'yaminova A., Graifer D., Karpova G. 2003. Positioning of mRNA codons with respect to 18S rRNA at the P and E sites of human ribosome. Biochim. Biophys. Acta. 1627, 39–46.PubMedGoogle Scholar
  8. 8.
    Graifer D., Molotkov M., Styazhkina V., Demeshkina N., Bulygin K., Eremina A., Ivanov A., Laletina E., Ven'yaminova A., Karpova G. 2004. Variable and conserved elements of human ribosomes surrounding the mRNA at the decoding and upstream sites. Nucleic Acids Res. 32, 3282–3293.PubMedCrossRefGoogle Scholar
  9. 9.
    Spahn C.M.T., Beckmann R., Eswar N., Penczek P.A., Sali A., Blobel G., Frank J. 2001. Structure of the 80S ribosome from Saccaromyces cerevisiae: tRNA-ribosome and subunit-subunit interactions. Cell. 107, 373–386.PubMedCrossRefGoogle Scholar
  10. 10.
    Morgan D.G., Menetret J.-F., Neuhof A., Rapoport T.A., Akey C.W. 2002. Structure of the mammalian ribosomechannel complex at 17 Å resolution. J. Mol. Biol. 324, 871–886.PubMedCrossRefGoogle Scholar
  11. 11.
    Molotkov M.V., Graifer D.M., Eremina A.V., Ivanov A.V., Laletina E.S., Repkova M.N., Ven'yaminova A.G., Karpova G.G. 2004. The template region 5′ of the E-site codon is close to S26 in the human 80S ribosome. Mol. Biol. 38, 1033–1040.Google Scholar
  12. 12.
    Molotkov M.V., Graifer D.M., Meshchaninova M.I., Repkova M.N., Ven'yaminova A.G., Karpova G.G. 2004. Protein environment of the sense codon of the template in the A site of the human ribosome as inferred from crosslinking to oligoribonucleotide derivatives. Mol. Biol. 38, 493–500.Google Scholar
  13. 13.
    Demeshkina N.A., Styazhkina V.A., Bulygin K.N., Repkova M.N., Ven'yaminova A.G., Karpova G.G. 2005. Template location on the human ribosome: Environment of the mRNA nucleotide adjoining the codon from the 3′ side in the A site. Bioorg. Khim. 31, 295–302.PubMedGoogle Scholar
  14. 14.
    Ven'yaminova A.G., Gorn V.V., Zenkova M.A., Komarova N.I., Repkova M.N. 1990. Automated H-phosphonate synthesis of oligoribonucleotides with the use of 2′-O-tetrahydropyranyl protective group. Bioorg. Khim. 16, 941–950.Google Scholar
  15. 15.
    Repkova M.N., Ivanova T.M., Komarova N.I., Meshchaninova N.I., Kuznetsova M.A., Ven'yaminova A.G. 1999. H-Phosphonate synthesis of oligoribonucleotides containing modified bases: 1. Photoreactive oligoribonucleotide derivatives with perfluoroarylazido groups in heterocyclic bases. Bioorg. Khim. 25, 690–701.Google Scholar
  16. 16.
    Smolenskaya I.A., Graifer D.M., Ivanov A.V., Vladimirov S.N., Ven'yaminova A.G., Repkova M.N., Stahl I., Karpova G.G. 1997. The protein environment of the template in the decoding site according to data on affinity modification of human placental ribosomes by alkylating derivatives of oligoribonucleotide GUGU3. Mol. Biol. 31, 144–151.Google Scholar
  17. 17.
    Matasova N.B., Myltseva S.V., Zenkova M.A., Graifer D.M., Vladimirov S.N., Karpova G.G. 1991. Isolation of ribosomal subunits containing intact rRNA from human placenta. Estimation of functional activity of 80S ribosomes. Analyt. Biochem. 198, 219–223.PubMedGoogle Scholar
  18. 18.
    Graifer D.M., Malygin A.A., Matasova N.B., Mundus D.A., Zenkova M.A., Karpova G.G. 1997. Studying functional significance of the sequence 980–1061 in the central domain of human 18S rRNA using complementary DNA probes. Biochim. Biophys. Acta. 1350, 335–344.PubMedGoogle Scholar
  19. 19.
    Malygin A.A., Graifer D.M., Bulygin K.N., Zenkova M.A., Yamkovoy V.I., Stahl J., Karpova G.G. 1994. Arrangement of mRNA at the decoding site of human ribosomes. 18S rRNA nucleotides and ribosomal proteins crosslinked to oligouridylate derivatives with alkylating groups at either the 3′ or the 5′-termini. Eur. J. Biochem. 226, 715–723.PubMedCrossRefGoogle Scholar
  20. 20.
    Wollenzien P. 1988. Isolation and identification of RNA crosslinks. Methods Enzymol. 164, 319–329.PubMedGoogle Scholar
  21. 21.
    Graifer D.M., Juzumiene D.I., Wollenzien P., Karpova G.G. 1994. Crosslinking of mRNA analogues containing 4-thiouridine residues on the 3′-or 5′-side of the coding triplet to the mRNA binding center of the human ribosome. Biochemistry. 33, 3878–3884.PubMedGoogle Scholar
  22. 22.
    Bulygin K.N., Repkova M.N., Ven'yaminova A.G., Graifer D.M., Karpova G.G., Frolova L.Yu., Kisselev L.L. 2002. Positioning of the mRNA stop signal with respect to polypeptide chain release factors and ribosomal proteins in 80S ribosomes. FEBS Lett. 514, 96–101.PubMedCrossRefGoogle Scholar
  23. 23.
    Rinke-Appel J., Junke N., Brimacombe R., Dokudovskaya S., Dontsova O., Bogdanov A. 1993. Site-directed crosslinking of mRNA analogues to 16S ribosomal RNA; a complete scan of crosslinks from all positions between ‘+1’ and ‘+16’ on the mRNA, downstream from the decoding site. Nucleic Acids Res. 21, 2853–2859.PubMedGoogle Scholar
  24. 24.
    Bhangu R., Wollenzien P. 1992. The mRNA binding track in the Escherichia coli ribosome for mRNAs of different sequences. Biochemistry. 31, 5937–5944.PubMedCrossRefGoogle Scholar
  25. 25.
    Styazhkina V.A., Molotkov M.V., Demeshkina N.A., Bulygin K.N., Graifer D.M., Meshchaninova M.I., Repkova M.N., Ven'yaminova A.G., Karpova G.G. 2003. Arrangement of the sense and stop codons of the template in the A site of the human ribosome as inferred from crosslinking with oligonucleotide derivatives. Mol. Biol. 37, 1019–1026.CrossRefGoogle Scholar
  26. 26.
    Yoshizawa S., Fourmy D., Puglisi J.D. 1999. Recognition of the codon-anticodon helix by ribosomal RNA. Science. 285, 1722–1725.PubMedCrossRefGoogle Scholar
  27. 27.
    Ivanov V., Mears J. 2004. Using crosslinks to study ribosomal dynamics. J. Biomol. Struct. Dynamics. 21, 691–698.Google Scholar
  28. 28.
    Sergiev P.V., Lavrik I.N., Wlasoff V.A., Dokudovskaya S.S., Dontsova O.A., Bogdanov A.A., Brimacombe R. 1997. The path of mRNA through the bacterial ribosome: A site-directed crosslinking study using new photoreactive derivatives of guanosine and uridine. RNA. 3, 464–475.PubMedGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • M. V. Molotkov
    • 1
  • D. M. Graifer
    • 1
  • N. A. Demeshkina
    • 1
  • M. N. Repkova
    • 1
  • A. G. Ven'yaminova
    • 1
  • G. G. Karpova
    • 1
  1. 1.Institute of Chemical Biology and Fundamental Medicine, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations