Skip to main content
Log in

Regulation of Nitrate and Nitrite Respiration in γ-Proteobacteria: A Comparative Genomics Study

  • Genomics. Transcriptomics. Proteomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Nitrate and nitrite are the most preferable electron acceptors in the absence of molecular oxygen. In the γ-proteobacterium Escherichia coli, nitrate and nitrite respiration is regulated by two homologous transcription factors, NarL and NarP. Although this regulatory system was a subject of intensive research for more than 20 years, many key issues, including the structure of the NarL-binding site, are still unclear. Comparative genomics analysis showed that only NarP is responsible for regulation in most γ-proteobacteria. The NarP regulon was studied in ten genomes. Although its structure considerably differs among some genomes, the mechanism regulating the nitrate and nitrite reduction genes is highly conserved. A correlation was observed between the evolutionary changes in the nitrate and nitrite respiration system and the relevant regulatory system. Potential NarP-binding sites were found upstream of the gene for the global regulator FNR and the sydAB, mdh, and sucAB aerobic metabolism genes. It was assumed on the basis of this evidence that the role of NarP in regulating respiration changed during evolution. In total, 35 new operons were assigned to the generalized NarP regulon. Autoregulation of the narQP operon was suggested for bacteria of the family Vibrionaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Gennis R.B., Stewart V. 1996 Respiration. In: Escherichia coli and Salmonella. Cellular and Molecular Biology. Ed. Neidhart F.C. Washington: ASM Press, pp. 217–286.

    Google Scholar 

  2. Stewart V., Rabin R.S. 1995 Dual sensors and dual response regulators interact to control nitrate-and nitrite-responsive gene expression in Escherichia coli. In: Two-Component Signal Transduction. Eds. Hoch J.A., Silhavy T.J. Washington: ASM Press, pp. 233–252.

    Google Scholar 

  3. Rabin R.S., Stewart V. 1993. Dual response regulators (NarL and NarP) interact with dual sensors (NarX and NarQ) to control nitrate-and nitrite-regulated gene expression in Escherichia coli K-12. J. Bacteriol. 175, 3259–3268.

    PubMed  CAS  Google Scholar 

  4. Darwin A.J., Tyson K.L., Busby S.J., Stewart V. 1997. Differential regulation by the homologous response regulators NarL and NarP of Escherichia coli K-12 depends on DNA binding site arrangement. Mol. Microbiol. 25, 583–595.

    Article  PubMed  CAS  Google Scholar 

  5. Li J., Kustu S., Stewart V. 1994. In vitro interaction of nitrate-responsive regulatory protein NarL with DNA target sequences in the fdnG, narG, narK and frdA operon control regions of Escherichia coli K-12. J. Mol. Biol. 241, 150–165.

    Article  PubMed  CAS  Google Scholar 

  6. Darwin A.J., Ziegelhoffer E.C., Kiley P.J., Stewart V. 1998. Fnr, NarP, and NarL regulation of Escherichia coli K-12 napF (periplasmic nitrate reductase) operon transcription in vitro. J. Bacteriol. 180, 4208.

    Google Scholar 

  7. Wang H., Gunsalus R.P. 2000. The nrfA and nirB nitrite reductase operons in Escherichia coli are expressed differently in response to nitrate than to nitrite. J. Bacteriol. 182, 5813–5822.

    PubMed  CAS  Google Scholar 

  8. Wang H., Gunsalus R.P. 2003. Coordinate regulation of the Escherichia coli formate dehydrogenase fdnGHI and fdhF genes in response to nitrate, nitrite, and formate: Roles for NarL and NarP. J. Bacteriol. 185, 5076–5085.

    PubMed  CAS  Google Scholar 

  9. Richard D.J., Sawers G., Sargent F., McWalter L., Boxer D.H. 1999. Transcriptional regulation in response to oxygen and nitrate of the operons encoding the [NiFe] hydrogenases 1 and 2 of Escherichia coli. Microbiology. 145, 2903–2912.

    PubMed  CAS  Google Scholar 

  10. Bongaerts J., Zoske S., Weidner U., Unden G. 1995. Transcriptional regulation of the proton translocating NADH dehydrogenase genes (nuoA-N) of Escherichia coli by electron acceptors, electron donors and gene regulator. Mol. Microbiol. 16, 521–534.

    PubMed  CAS  Google Scholar 

  11. Bearson S.M., Albrecht J.A., Gunsalus R.P. 2002. Oxygen and nitrate-dependent regulation of dmsABC operon expression in Escherichia coli: Sites for Fnr and NarL protein interactions. BMC Microbiol. 2, 13.

    Article  PubMed  Google Scholar 

  12. Iuchi S., Lin E.C. 1987. The narL gene product activates the nitrate reductase operon and represses the fumarate reductase and trimethylamine N-oxide reductase operons in Escherichia coli. Proc. Natl. Acad. Sci. USA. 84, 3901–3905.

    PubMed  CAS  Google Scholar 

  13. Golby P., Kelly D.J., Guest J.R., Andrews S.C. 1998. Transcriptional regulation and organization of the dcuA and dcuB genes, encoding homologous anaerobic C4-dicarboxylate transporters in Escherichia coli. J. Bacteriol. 180, 6586–6596.

    PubMed  CAS  Google Scholar 

  14. Kaiser M., Sawers G. 1995. Nitrate repression of the Escherichia coli pfl operon is mediated by the dual sensors NarQ and NarX and the dual regulators NarL and NarP. J. Bacteriol. 177, 3647–3655.

    PubMed  CAS  Google Scholar 

  15. Chen Y.M., Lin E.C. 1991. Regulation of the adhE gene, which encodes ethanol dehydrogenase in Escherichia coli. J. Bacteriol. 173, 8009–8013.

    PubMed  CAS  Google Scholar 

  16. Mironov A.A., Koonin E.V., Roytberg M.A., Gelfand M.S. 1999. Computer analysis of transcription regulatory patterns in completely sequenced bacterial genomes. Nucleic Acids Res. 27, 2981–2989.

    Article  PubMed  CAS  Google Scholar 

  17. Mironov A.A., Vinokurova N.P., Gelfand M.S. 2000. Software for analyzing bacterial genomes. Mol. Biol. 34, 253–262.

    Article  CAS  Google Scholar 

  18. Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z M.W., Lipman D.J. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  19. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. 1997. The CLUSTAL-X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.

    Article  PubMed  CAS  Google Scholar 

  20. Felsenstein J. 1996. Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol. 266, 418–427.

    PubMed  CAS  Google Scholar 

  21. Schneider T.D., Stephens R.M. 1990. Sequence logos: A new way to display consensus sequences. Nucleic Acids Res. 18, 6097–6100.

    PubMed  CAS  Google Scholar 

  22. Blattner F.R., Plunkett G., Bloch C.A., Perna N.T., Burland V., Riley M., Collado-Vides J., Glasner J.D., Rode C.K., Mayhew G.F., Gregor J., Davis N.W., Kirkpatrick H.A., Goeden M.A., Rose D.J., Mau B., Shao Y. 1997. The complete genome sequence of Escherichia coli K-12. Science. 277, 1453–1474.

    Article  PubMed  CAS  Google Scholar 

  23. Deng W., Liou S.R., Plunkett G., Mayhew G.F., Rose D.J., Burland V., Kodoyianni V., Schwartz D.C., Blattner F.R. 2003. Comparative genomics of Salmonella enterica serovar Typhi strains Ty2 and CT18. J. Bacteriol. 185, 2330–2337.

    PubMed  CAS  Google Scholar 

  24. Bell K.S., Sebaihia M., Pritchard L., Holden M.T., Hyman L.J., Holeva M.C., Thomson N.R., Bentley S.D., Churcher L.J., Mungall K., Atkin R., Bason N., Brooks K., Chillingworth T., Clark K., Doggett J., Fraser A., Hance Z., Hauser H., Jagels K., Moule S., Norbertczak H., Ormond D., Price C., Quail M.A., Sanders M., Walker D., Whitehead S., Salmond G.P., Birch P.R., Parkhill J., Toth I.K. 2004. Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. Proc. Natl. Acad. Sci. USA. 101, 11105–11110.

    Article  PubMed  CAS  Google Scholar 

  25. Deng W., Burland V., Plunkett G., Boutin A., Mayhew G.F., Liss P., Perna N.T., Rose D.J., Mau B., Zhou S., Schwartz D.C., Fetherston J.D., Lindler L.E., Brubaker R.R., Plano G.V., Straley S.C., McDonough K.A., Nilles M.L., Matson J.S., Blattner F.R., Perry R.D. 2002. Genome sequence of Yersinia pestis KIM. J. Bacteriol. 184, 4601–4611.

    Article  PubMed  CAS  Google Scholar 

  26. Fleischmann R.D., Adams M.D., White O., Clayton R.A., Kirkness E.F., Kerlavage A.R., Bult C.J., Tomb J.F., Dougherty B.A., Merrick J.M., McKenney K., Sutton G.G., FitzHugh W., Fields C.A., Gocayne J.D., Scott J.D., Shirley R., Liu L.I., Glodek A., Kelley J.M., Weidman J.F., Phillips C.A., Spriggs T., Hedblom E., Cotton M.D., Utterback T., Hanna M.C., Nguyen D.T., Saudek D.M., Brandon R.C., Fine L.D., Fritchman J.L., Fuhrmann J.L., Geoghagen N.S., Gnehm C.L., McDonald L.A., Small K.V., Fraser C.M., Smith H.O., Venter J.C. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 269, 496–512.

    PubMed  CAS  Google Scholar 

  27. May B.J., Zhang Q., Li L.L., Paustian M.L., Whittam T.S., Kapur V. 2001. Complete genomic sequence of Pasteurella multocida, Pm70. Proc. Natl. Acad. Sci. USA. 98, 3460–3465.

    Article  PubMed  CAS  Google Scholar 

  28. Heidelberg J.F., Eisen J.A., Nelson W.C., Clayton R.A., Gwinn M.L., Dodson R.J., Haft D.H., Hickey E.K., Peterson J.D., Umayam L.A., Gill S.R., Nelson K.E., Read T.D., Tettelin H., Richardson D., Ermolaeva M.D., Vamathevan J., Bass S., Qin H., Dragoi I., Sellers P., McDonald L., Utterback T., Fleishmann R.D., Nierman W.C., White O., Salzberg S.L., Smith H.O., Colwell R.R., Mekalanos J.J., Venter J.C., Fraser C.M. 2000. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature. 406, 477–483.

    PubMed  CAS  Google Scholar 

  29. Makino K., Oshima K., Kurokawa K., Yokoyama K., Uda T., Tagomori K., Iijima Y., Najima M., Nakano M., Yamashita A., Kubota Y., Kimura S., Yasunaga T., Honda T., Shinagawa H., Hattori M., Iida T. 2003. Genome sequence of Vibrio parahaemolyticus: A pathogenic mechanism distinct from that of V. cholerae. Lancet. 361, 743–749.

    Article  PubMed  CAS  Google Scholar 

  30. Kim Y.R., Lee S.E., Kim C.M., Kim S.Y., Shin E.K., Shin D.H., Chung S.S., Choy H.E., Progulske-Fox A., Hillman J.D., Handfield M., Rhee J.H. 2003. Characterization and pathogenic significance of Vibrio vulnificus antigens preferentially expressed in septicemic patients. Infect. Immunol. 71, 5461–5471.

    CAS  Google Scholar 

  31. Benson D.A., Boguski M.S., Lipman D.J., Ostell J., Ouellette B.F., Rapp B.A., Wheeler D.L. 1999. Gen-Bank. Nucleic Acids Res. 27, 12–17.

    PubMed  CAS  Google Scholar 

  32. Bernal A., Ear U., Kyrpides N. 2001. Genomes OnLine Database (GOLD): A monitor of genome projects worldwide. Nucleic Acids Res. 29, 126–127.

    Article  PubMed  CAS  Google Scholar 

  33. Stewart V., Chen L.L., Wu H.C. 2003. Response to culture aeration mediated by the nitrate and nitrite sensor NarQ of Escherichia coli K-12. Mol. Microbiol. 50, 1391–1399.

    Article  PubMed  CAS  Google Scholar 

  34. Stewart V. 2003. Biochemical Society Special Lecture: Nitrate-and nitrite-responsive sensors NarX and NarQ of proteobacteria. Biochem. Soc. Trans. 31, 1–10.

    PubMed  CAS  Google Scholar 

  35. Baikalov I., Schroder I., Kaczor-Grzeskowiak M., Grzeskowiak K., Gunsalus R.P., Dickerson R.E. 1996. Structure of the Escherichia coli response regulator NarL. Biochemistry. 35, 11053–11061.

    Article  PubMed  CAS  Google Scholar 

  36. Maris A.E., Sawaya M.R., Kaczor-Grzeskowiak M., Jarvis M.R., Bearson S.M., Kopka M.L., Schroder I., Gunsalus R.P., Dickerson R.E. 2002. Dimerization allows DNA target site recognition by the NarL response regulator. Nature Struct. Biol. 9, 771–778.

    Article  PubMed  CAS  Google Scholar 

  37. Gelfand M.S., Laikova O.N. 2003. Prolegomena to the evolution of transcriptional regulation in bacterial genomes. In: Frontiers in Computitional Genomics. Eds. Galperin M.Y., Koonin E.V. Wymondham, U.K.: Caiser Acad. Press, pp. 195–216.

    Google Scholar 

  38. Darwin A.J., Li J., Stewart V. 1996. Analysis of nitrate regulatory protein NarL-binding sites in the fdnG and narG operon control regions of Escherichia coli K-12. Mol. Microbiol. 20, 621–632.

    Article  PubMed  CAS  Google Scholar 

  39. Plunkett G., Burland. V., Daniels D.L., Blattner F.R. 1993. Analysis of the Escherichia coli genome: 3. DNA sequence of the region from 87.2 to 89.2 minutes. Nucleic Acids Res. 21, 3391–3398.

    PubMed  CAS  Google Scholar 

  40. Tokuda H., Nakamura T., Unemoto T. 1981. Potassium ion is required for the generation of pH-dependent membrane potential and delta pH by the marine bacterium Vibrio alginolyticus. Biochemistry. 20, 4198–4203.

    Article  PubMed  CAS  Google Scholar 

  41. Gon S., Patte J.C., Mejean V., Iobbi-Nivol C. 2000. The torYZ (yecK-bisZ) operon encodes a third respiratory trimethylamine N-oxide reductase in Escherichia coli. J. Bacteriol. 182, 5779–5786.

    Article  PubMed  CAS  Google Scholar 

  42. Cotter P.A., Chepuri V., Gennis R.B., Gunsalus R.P. 1990. Cytochrome o (cyoABCDE) and d (cydAB) oxidase gene expression in Escherichia coli is regulated by oxygen, pH, and the fnr gene product. J. Bacteriol. 172, 6333–6338.

    PubMed  CAS  Google Scholar 

  43. Tseng C.P., Yu C.C., Lin H.H., Chang C.Y., Kuo J.T. 2001. Oxygen-and growth rate-dependent regulation of Escherichia coli fumarase (FumA, FumB, and FumC) activity. J. Bacteriol. 183, 461–467.

    Article  PubMed  CAS  Google Scholar 

  44. Spiro S., Guest J.R. 1991. Adaptive responses to oxygen limitation in Escherichia coli. Trends Biochem. Sci. 16, 310–314.

    Article  PubMed  CAS  Google Scholar 

  45. Wyborn N.R., Messenger S.L., Henderson R.A., Sawers G., Roberts R.E., Attwood M.M., Green J. 2002. Expression of the Escherichia coli yfiD gene responds to intracellular pH and reduces the accumulation of acidic metabolic end products. Microbiology. 148, 1015–1026.

    PubMed  CAS  Google Scholar 

  46. Jiang G.R., Nikolova S., Clark D.P. 2001. Regulation of the ldhA gene, encoding the fermentative lactate dehydrogenase of Escherichia coli. Microbiology. 147, 2437–2446.

    PubMed  CAS  Google Scholar 

  47. Alefounder P.R., Perham R.N. 1989. Identification, molecular cloning and sequence analysis of a gene cluster encoding the class II fructose 1.6-bisphosphate aldolase, 3-phosphoglycerate kinase and a putative second glyceraldehyde 3-phosphate dehydrogenase of Escherichia coli. Mol. Microbiol. 3, 723–732.

    PubMed  CAS  Google Scholar 

  48. Park S.J., Cotter P.A., Gunsalus R.P. 1995. Regulation of malate dehydrogenase (mdh) gene expression in Escherichia coli in response to oxygen, carbon, and heme availability. J. Bacteriol. 177, 6652–6656.

    PubMed  CAS  Google Scholar 

  49. Park S.J., Chao G., Gunsalus R. 1997. Aerobic regulation of the sucABCD genes of Escherichia coli, which encode alpha-ketoglutarate dehydrogenase and succinyl coenzyme A synthetase: Roles of ArcA, Fnr, and the upstream sdh-CDAB promoter. J. Bacteriol. 178, 4138–4142.

    Google Scholar 

  50. Rajagopalan K.V. 1996 Biosynthesis of the molybdenum cofactor. In: Escherichia coli and Salmonella. Cellular and Molecular Biology. Ed. Neidhart F.C. Washington: ASM Press, pp. 674–679.

    Google Scholar 

  51. Green J.M., Nichols B.P., Matthews R.G. 1996. Folate biosynthesis, reduction, and polyglutamylation. In: Escherichia coli and Salmonella. Cellular and Molecular Biology. Ed. Neidhart F.C. Washington: ASM Press, pp. 665–673.

    Google Scholar 

  52. Kredich N.M. 1996. Biosynthesis of cysteine. In: Escherichia coli and Salmonella. Cellular and Molecular Biology. Ed. Neidhart F.C. Washington: ASM Press, pp. 514–527.

    Google Scholar 

  53. Darwin A.J., Stewart V. 1995. Expression of the narX, narL, narP, and narQ genes of Escherichia coli K-12: Regulation of the regulators. J. Bacteriol. 177, 3865–3869.

    PubMed  CAS  Google Scholar 

  54. Lynch A.S., Lin C.C. 1996. Responses to molecular oxygen. In: Escherichia coli and Salmonella. Cellular and Molecular Biology. Ed. Neidhart F.C. Washington: ASM Press, pp. 1526–1537.

    Google Scholar 

  55. Cronan J.E., Laporte D. 1996. Tricarboxylic acid cycle and glyoxylate bypass. In: Escherichia coli and Salmonella. Cellular and Molecular Biology. Ed. Neidhart F.C. Washington: ASM Press, pp. 206–216.

    Google Scholar 

  56. Ravcheev D.A., Gelfand M.S., Mironov A.A., Rakhmaninova A.B. 2002. The purine regulon of gamma-proteo-bacteria: A detailed description. Genetika. 38, 1203–1214.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Molekulyarnaya Biologiya, Vol. 39, No. 5, 2005, pp. 832–846.

Original Russian Text Copyright © 2005 by Ravcheev, Rakhmaninova, Mironov, Gelfand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravcheev, D.A., Rakhmaninova, A.B., Mironov, A.A. et al. Regulation of Nitrate and Nitrite Respiration in γ-Proteobacteria: A Comparative Genomics Study. Mol Biol 39, 727–740 (2005). https://doi.org/10.1007/s11008-005-0088-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11008-005-0088-7

Key words

Navigation