Skip to main content
Log in

Immunochemical Properties of Recombinant Polypeptides Mimicking Domains I and II of West Nile Virus Glycoprotein E

  • Genomics. Transcriptomics. Proteomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Complementary DNA fragments (nucleotides 935–1475, 1091–1310, and 935–1193) encoding the N-terminal portion of glycoprotein E of West Nile virus (WNV), strain LEIV-Vlg99-27889-human, were cloned. Recombinant polypeptides of glycoprotein E (E1–180, E53–126, and E1–86) of the WNV having amino acid sequences corresponding to the cloned cDNA fragments and mimicking the main functional regions of domains I and II of surface glycoprotein E were purified by affinity chromatography. According to ELISA and Western blotting, 12 types of monoclonal antibodies (MAbs) raised in our laboratory against recombinant polypeptide E1–180 recognized the WNV glycoprotein E. This is indicative of similarity between the antigenic structures of the short recombinant polypeptides and corresponding regions of the glycoprotein. Analysis of interactions of the MAbs with short recombinant polypeptides and protein E of tick-borne encephalitis virus revealed at least six epitopes within domains I and II of the WNV protein E. We found at least seven MAb types against the region between amino acid residues (aa) 86 and 126 of domain II, which contains the peptide responsible for fusion of the virus and cell membranes (residues 98–110). The epitope for antireceptor MAbs 10H10 was mapped within the 53–86 aa region of domain II of WNV protein E, which is evidence for the spatial proximity of the fusion peptide and the coreceptor of protein E (residues 53–86) for cellular laminin-binding protein (LBP). The X-ray pattern of protein E suggests that the bc loop (residues 73–89) of domain II interacts with LBP and, together with the cd loop (fusion peptide), determines the initial stages of flavivirus penetration into the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Calisher C.H., Karabatsos N. 1988. In: Arbovirus Serogroups: Definition and Geographic Distribution. Ed. Monath T.P. London: CRC Press, pp. 19–57.

    Google Scholar 

  2. Lindenbach B.D., Rice C.M. 2001. Flaviviridae: The viruses and their replication. In: Fundamental Virology, 4th ed. Eds. Knippe D.M., Howley P.M. Philadelphia: Lippincott Williams & Wilkins, pp. 589–641.

    Google Scholar 

  3. Calisher C.H., Karabatsos N., Dalrymple J.M., Shope R.E., Porterfield J.S., Westaway E.G., Brandt W.E. 1989. Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. J. Gen. Virol. 70, 37–43.

    Article  PubMed  Google Scholar 

  4. Campbell G.L., Marfin A.A., Lanciotti R.S., Gubler D.J. 2002. West Nile virus. Lancet. Infect. Dis. 9, 519–529.

    Google Scholar 

  5. Nash D., Mostashari F., Fine A., Miller J., O'Leary D., Murray K., Huang A., Rosenberg A., Greenberg A., Sherman M., Wong S., Layton M. 2001. Outbreak of West Nile virus infection, New York City area, 1999. N. Engl. J. Med. 344, 1807–1814.

    Article  PubMed  CAS  Google Scholar 

  6. Hanna J.N., Ritchie S.A., Phillips D.A., Shield J., Bailey M.C., Mackenzie J.S., Poidinger M., McCall B.J., Mills P.J. 1996. Experience with WN virus in the Old World and SLE. An outbreak of Japanese encephalitis in the Torres Strait, Australia, 1995. Med. J. 165, 256–260.

    CAS  Google Scholar 

  7. Lanciotti R.S., Roehrig J.T., Deubel V., Smith J., Parker M., Steele K., Crise B., Volpe K.E., Crabtree M.B., Scherret J.H., Hall R.A., MacKenzie J.S., Cropp C.B., Panigrahy B., Ostlund E., Schmitt B., Malkinson M., Banet C., Weissman J., Komar N., Savage H.M., Stone W., McNamara T., Gubler D.J. 1999. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science. 286, 2333–2337.

    Article  PubMed  CAS  Google Scholar 

  8. http://www.cdc.gov/od/oc/media/wnv/cases.htm

  9. Lvov D.K., Butenko A.M., Gromashevsky V.L., Larichev V.P., Gaidamovich S.Y., Vyshemirsky O.I., Zhukov A.N., Lazorenko V.V., Salko V.N., Kovtunov A.I., Galimzyanov K.M., Platonov A.E., Morozova T.N., Khutoretskaya N.V., Shishkina E.O., Skvortsova T.M. 2000. Isolation of two strains of West Nile virus during an outbreak in southern Russia, 1999. Emerg. Infect. Dis. 6, 373–376.

    PubMed  CAS  Google Scholar 

  10. Lvov D.K., Butenko A.M., Gromashevsky V.L., Kovtunov A.I., Prilipov A.G., Kinney R., Aristova V.A., Dzharkenov A.F., Samokhvalov E.I., Savage H.M., Shchelkanov M.Y., Galkina I.V., Deryabin P.G., Gubler D.J., Kulikova L.N., Alkhovsky S.K., Moskvina T.M., Zlobina L.V., Sadykova G.K., Shatalov A.G., Lvov D.N., Usachev V.E., Voronina A.G. 2004. West Nile virus and other zoonotic viruses in Russia: Examples of emerging-reemerging situations. Arch. Virol. Suppl. 18, 85–96.

    Google Scholar 

  11. Lanciotti R.S., Ebel G.D., Deubel V., Kerst A.J., Murri S., Meyer R., Bowen M., McKinney N., Morrill W.E., Crabtree M.B., Kramer L.D., Roehrig J.T. 2002. Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East. Virology. 298, 96–105.

    Article  PubMed  CAS  Google Scholar 

  12. Rey F.A., Heinz F.X., Mandl C., Kunz C., Harrison S.C. 1995. The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature. 375, 291–298.

    Article  PubMed  CAS  Google Scholar 

  13. Pytela R., Pierschbacher M.D. 1987. Arginine-glycine-aspartic acid adhesion receptors. Methods Enzymol. 144, 475–489.

    PubMed  CAS  Google Scholar 

  14. Allison S.L., Schalich J., Stiasny K., Mandl C.W., Heinz F.X. 2001. Mutational evidence for an internal fusion peptide in flavivirus envelope protein E. J. Virol. 75, 4268–4275.

    Article  PubMed  CAS  Google Scholar 

  15. Roehrig J.T., Hunt A.R., Johnson A.J., Hawkes R.A. 1989. Synthetic peptides derived from the deduced amino acid sequence of the E glycoprotein of Murray Valley encephalitis virus elicit antiviral antibody. Virology. 171, 49–60.

    Article  PubMed  CAS  Google Scholar 

  16. Roehrig J.T., Johnson A.J., Hunt A.R., Bolin R.A., Chu M.C. 1990. Antibodies to Dengue 2 virus E-glycoprotein synthetic peptides identify antigenic conformation. Virology. 177, 668–675.

    Article  PubMed  CAS  Google Scholar 

  17. Allison S.L., Schalich J., Stiasny K., Mandl C.W., Kunz C., Heinz F.X. 1995. Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. J. Virol. 69, 695–700.

    PubMed  CAS  Google Scholar 

  18. Stiasny K., Allison S.L., Marchler-Bauer A., Kunz C., Heinz F.X. 1996. Structural requirements for low-pH-induced rearrangements in the envelope glycoprotein of tick-borne encephalitis virus. J. Virol. 70, 8142–8147.

    PubMed  CAS  Google Scholar 

  19. Modis Y., Ogata S., Clements D., Harrison S.C. 2004. Structure of the Dengue virus envelope protein after membrane fusion. Nature. 427, 313–320.

    Article  PubMed  CAS  Google Scholar 

  20. Protopopova E.V., Khusainova A.D., Konovalova S.N., Loktev V.B. 1996. Production and characterization of anti-idiotype antibodies carrying hemagglutinating paratopes of tick-borne encephalitis virus on their surface. Vopr. Virusol. 2, 50–53.

    Google Scholar 

  21. Protopopova E.V., Sorokin A.V., Konovalova S.N., Kachko A.V., Netesov S.V., Loktev V.B. 1999. Human laminin binding protein as a cell receptor for tick-borne encephalitis virus. Zbl. Bacteriol. 289, 632–638.

    CAS  Google Scholar 

  22. Thepparit C., Smith D.R. 2004. Serotype-specific entry of Dengue virus into liver cells: identification of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a Dengue virus serotype 1 receptor. J. Virol. 78, 12647–12656.

    Article  PubMed  CAS  Google Scholar 

  23. Loktev A.V., Kuvshinov V.N., Medlamed N.V., Ivanisenko V.A., Mishin V.P., Il'ichev A.A. 2002. Localization of the tick-borne encephalitis virus protein E antigenic determinant recognized by antihemagglutinating monoclonal antibodies using a peptide phage library. Vopr. Virusol. 47, 31–34.

    CAS  Google Scholar 

  24. Lvov D.K., Butenko A.M., Gromashevsky V.L., Larichev V.P., Gaidamovich S.Y., Vyshemirsky O.I., Zhukov A.N., Lazorenko V.V., Salko V.N., Kovtunov A.I., Galimzyanov K.M., Platonov A.E., Morozova T.N., Khutoretskaya N.V., Shishkina E.O., Skvortsova T.M. 2000. Isolation of two strains of West Nile virus during an outbreak in Southern Russia, 1999. Emerg. Infect. Dis. 6, 373–376.

    Article  PubMed  CAS  Google Scholar 

  25. Gaidamovich S.Ya., Loktev V.B., Lavrova N.A. Cross reactivity between tick-borne encephalitis and Venezuelan equine encephalomyelitis viruses as revealed by monoclonal antibodies. Vopr. Virusol. 3, 221–225.

  26. Ternovoi V.A., Shchelkanov M.Yu., Shestopalov A.M., Aristova V.A., Protopopova E.V., Gromashevsky V.L., Druzyaka A.V., Zolotykh S.I., Loktev V.B., Lvov D.K. 2004. West Nile virus revealed in birds in the Kulunda and Baraba lowlands (West Siberian flyway) in the summer-autumn period of 2002. Vopr. Virusol. 49, 52–56.

    PubMed  CAS  Google Scholar 

  27. Gefter M.L., Margulies D.H., Scharft M.D. 1977. A simple method for polyethylene glycol-promoted hybridization of mouse myeloma cells. Somat. Cell. Genet. 3, 231–236.

    Article  PubMed  CAS  Google Scholar 

  28. Razumov I.A., Agapov E.V., Pereboev A.V., Protopopova E.V., Lebedeva S.D., Loktev V.B. 1991. Antigenic structure of the Venezuelan equine encephalomyelitis E2 glycoprotein as analyzed with rat monoclonal antibodies. Vopr. Virusol. 36, 34–37.

    PubMed  CAS  Google Scholar 

  29. Laemmli U.K. 1970. Cleavage of structural proteins dur-ing the assembly of the head of bacteriophage T4. Nature. 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  30. Towbin H.T., Staehelin J.G. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA. 76, 4350–4354.

    PubMed  CAS  Google Scholar 

  31. Towbin H., Gordon J. 1984. Immunoblotting and dot immunobinding: Current status and outlook. J. Immunol. Meth. 72, 313–340.

    CAS  Google Scholar 

  32. Shindyalov I.N., Bourne P.E. 1998. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. 11, 739–747.

    PubMed  CAS  Google Scholar 

  33. Chambers T.J., Hanh C.S., Galler R., Rice C. M. 1990. Flavivirus genome organization, expression, and replication. Rev. Microbiol. 44, 649–688.

    CAS  Google Scholar 

  34. Heinz F.X., Roehrig J.T. 1990. Immunochemistry of viruses. The basis for serodiagnosis and vaccines. 2, 289–305.

    Google Scholar 

  35. Pletnev S.V., Zhang W., Mukhopadhyay S., Fisher B.R., Hernandez R., Brown D.T., Baker T.S., Rossmann M.G., Kuhn R.J. 2001. Locations of carbohydrate sites on alphavirus glycoproteins show that E1 forms an icosahedral scaffold. Cell. 105, 127–136.

    Article  PubMed  CAS  Google Scholar 

  36. Kenneth R.G., McCairn T.J., Behtol K.B. 1983. Monoclonal antibodies. In: Gibridomy: novyi uroven' biologicheskogo analiza (Hybridomas: A New Level of Biological Analysis). Moscow: Meditsina.

    Google Scholar 

  37. Rudzevich T.N., Ternovoi V.A., Kazachinskaya E.I., Razumov I.A., Chepurnov A.A., Loktev V.B., Netesov S.V. 2003. Revealing antigenic determinants at the N-terminus of the Ebola virus VP35 protein using short recombinant fragments of this protein. Mol. Genet. Mikrobiol. Virusol. 2, 38–40.

    Google Scholar 

  38. Sorokin A.V., Kazachinskaia E.I., Ivanova A.V., Kachko A.V., Netesov S.V., Bukreyev A.A., Loktev V.B., Razumov I.A. 2002. Mapping of two dominant sites of VP35 of Marburg virus. Viral Immunol. 15, 481–493.

    Article  PubMed  CAS  Google Scholar 

  39. Cheshenko N.V., Petrov V.S., Protopopova E.V., Netesova N.A., Konovalova S.N., Belavin P.A., Loktev V.B., Malygin E.G. 1997. Recombinant vaccine virus expressing the Japanese encephalitis virus E protein. Mol. Genet. Mikrobiol. Virusol. 3, 24–27.

    Google Scholar 

  40. Belavin P.A. Netesova N.A., Reshetnikov S.S., Ivanisenko V.A., Eroshkin A.M., Protopopova E.V., Loktev V.B., Malygin E.G. 1997. Expression of Japanese encephalitis virus E gene fragments in Escherichia coli cells. Biotekhnologiya. 3, 3–9.

    Google Scholar 

  41. Butrapet S., Kimura-Kuroda J., Zhou D.-Sh., Yasui K. 1998. Neutralizing mechanism of a monoclonal antibody against Japanese encephalitis virus glycoprotein E. Am. J. Trop. Med. Hyg. 58, 389–398.

    PubMed  CAS  Google Scholar 

  42. Beasley D.W.C., Barrett A.D.T. 2002. Identification of neutralizing epitopes within structural domain III of the West Nile virus envelope protein. J. Virol. 76, 13097–13100.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Molekulyarnaya Biologiya, Vol. 39, No. 5, 2005, pp. 813–822.

Original Russian Text Copyright © 2005 by Bogachek, Protopopova, Ternovoi, Kachko, Ivanova, Ivanisenko, Loktev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogachek, M.V., Protopopova, E.V., Ternovoi, V.A. et al. Immunochemical Properties of Recombinant Polypeptides Mimicking Domains I and II of West Nile Virus Glycoprotein E. Mol Biol 39, 710–718 (2005). https://doi.org/10.1007/s11008-005-0086-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11008-005-0086-9

Key words

Navigation