Advertisement

Molecular Biology

, 39:710 | Cite as

Immunochemical Properties of Recombinant Polypeptides Mimicking Domains I and II of West Nile Virus Glycoprotein E

  • M. V. Bogachek
  • E. V. Protopopova
  • V. A. Ternovoi
  • A. V. Kachko
  • A. V. Ivanova
  • V. A. Ivanisenko
  • V. B. Loktev
Genomics. Transcriptomics. Proteomics

Abstract

Complementary DNA fragments (nucleotides 935–1475, 1091–1310, and 935–1193) encoding the N-terminal portion of glycoprotein E of West Nile virus (WNV), strain LEIV-Vlg99-27889-human, were cloned. Recombinant polypeptides of glycoprotein E (E1–180, E53–126, and E1–86) of the WNV having amino acid sequences corresponding to the cloned cDNA fragments and mimicking the main functional regions of domains I and II of surface glycoprotein E were purified by affinity chromatography. According to ELISA and Western blotting, 12 types of monoclonal antibodies (MAbs) raised in our laboratory against recombinant polypeptide E1–180 recognized the WNV glycoprotein E. This is indicative of similarity between the antigenic structures of the short recombinant polypeptides and corresponding regions of the glycoprotein. Analysis of interactions of the MAbs with short recombinant polypeptides and protein E of tick-borne encephalitis virus revealed at least six epitopes within domains I and II of the WNV protein E. We found at least seven MAb types against the region between amino acid residues (aa) 86 and 126 of domain II, which contains the peptide responsible for fusion of the virus and cell membranes (residues 98–110). The epitope for antireceptor MAbs 10H10 was mapped within the 53–86 aa region of domain II of WNV protein E, which is evidence for the spatial proximity of the fusion peptide and the coreceptor of protein E (residues 53–86) for cellular laminin-binding protein (LBP). The X-ray pattern of protein E suggests that the bc loop (residues 73–89) of domain II interacts with LBP and, together with the cd loop (fusion peptide), determines the initial stages of flavivirus penetration into the cell.

Key words

West Nile virus tick-borne encephalitis virus glycoprotein E fusion peptide ELISA monoclonal antibodies recombinant peptides laminin-binding protein receptor 

REFERENCES

  1. 1.
    Calisher C.H., Karabatsos N. 1988. In: Arbovirus Serogroups: Definition and Geographic Distribution. Ed. Monath T.P. London: CRC Press, pp. 19–57.Google Scholar
  2. 2.
    Lindenbach B.D., Rice C.M. 2001. Flaviviridae: The viruses and their replication. In: Fundamental Virology, 4th ed. Eds. Knippe D.M., Howley P.M. Philadelphia: Lippincott Williams & Wilkins, pp. 589–641.Google Scholar
  3. 3.
    Calisher C.H., Karabatsos N., Dalrymple J.M., Shope R.E., Porterfield J.S., Westaway E.G., Brandt W.E. 1989. Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. J. Gen. Virol. 70, 37–43.PubMedCrossRefGoogle Scholar
  4. 4.
    Campbell G.L., Marfin A.A., Lanciotti R.S., Gubler D.J. 2002. West Nile virus. Lancet. Infect. Dis. 9, 519–529.Google Scholar
  5. 5.
    Nash D., Mostashari F., Fine A., Miller J., O'Leary D., Murray K., Huang A., Rosenberg A., Greenberg A., Sherman M., Wong S., Layton M. 2001. Outbreak of West Nile virus infection, New York City area, 1999. N. Engl. J. Med. 344, 1807–1814.CrossRefPubMedGoogle Scholar
  6. 6.
    Hanna J.N., Ritchie S.A., Phillips D.A., Shield J., Bailey M.C., Mackenzie J.S., Poidinger M., McCall B.J., Mills P.J. 1996. Experience with WN virus in the Old World and SLE. An outbreak of Japanese encephalitis in the Torres Strait, Australia, 1995. Med. J. 165, 256–260.Google Scholar
  7. 7.
    Lanciotti R.S., Roehrig J.T., Deubel V., Smith J., Parker M., Steele K., Crise B., Volpe K.E., Crabtree M.B., Scherret J.H., Hall R.A., MacKenzie J.S., Cropp C.B., Panigrahy B., Ostlund E., Schmitt B., Malkinson M., Banet C., Weissman J., Komar N., Savage H.M., Stone W., McNamara T., Gubler D.J. 1999. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science. 286, 2333–2337.CrossRefPubMedGoogle Scholar
  8. 8.
    http://www.cdc.gov/od/oc/media/wnv/cases.htmGoogle Scholar
  9. 9.
    Lvov D.K., Butenko A.M., Gromashevsky V.L., Larichev V.P., Gaidamovich S.Y., Vyshemirsky O.I., Zhukov A.N., Lazorenko V.V., Salko V.N., Kovtunov A.I., Galimzyanov K.M., Platonov A.E., Morozova T.N., Khutoretskaya N.V., Shishkina E.O., Skvortsova T.M. 2000. Isolation of two strains of West Nile virus during an outbreak in southern Russia, 1999. Emerg. Infect. Dis. 6, 373–376.PubMedGoogle Scholar
  10. 10.
    Lvov D.K., Butenko A.M., Gromashevsky V.L., Kovtunov A.I., Prilipov A.G., Kinney R., Aristova V.A., Dzharkenov A.F., Samokhvalov E.I., Savage H.M., Shchelkanov M.Y., Galkina I.V., Deryabin P.G., Gubler D.J., Kulikova L.N., Alkhovsky S.K., Moskvina T.M., Zlobina L.V., Sadykova G.K., Shatalov A.G., Lvov D.N., Usachev V.E., Voronina A.G. 2004. West Nile virus and other zoonotic viruses in Russia: Examples of emerging-reemerging situations. Arch. Virol. Suppl. 18, 85–96.Google Scholar
  11. 11.
    Lanciotti R.S., Ebel G.D., Deubel V., Kerst A.J., Murri S., Meyer R., Bowen M., McKinney N., Morrill W.E., Crabtree M.B., Kramer L.D., Roehrig J.T. 2002. Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East. Virology. 298, 96–105.CrossRefPubMedGoogle Scholar
  12. 12.
    Rey F.A., Heinz F.X., Mandl C., Kunz C., Harrison S.C. 1995. The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature. 375, 291–298.CrossRefPubMedGoogle Scholar
  13. 13.
    Pytela R., Pierschbacher M.D. 1987. Arginine-glycine-aspartic acid adhesion receptors. Methods Enzymol. 144, 475–489.PubMedGoogle Scholar
  14. 14.
    Allison S.L., Schalich J., Stiasny K., Mandl C.W., Heinz F.X. 2001. Mutational evidence for an internal fusion peptide in flavivirus envelope protein E. J. Virol. 75, 4268–4275.CrossRefPubMedGoogle Scholar
  15. 15.
    Roehrig J.T., Hunt A.R., Johnson A.J., Hawkes R.A. 1989. Synthetic peptides derived from the deduced amino acid sequence of the E glycoprotein of Murray Valley encephalitis virus elicit antiviral antibody. Virology. 171, 49–60.CrossRefPubMedGoogle Scholar
  16. 16.
    Roehrig J.T., Johnson A.J., Hunt A.R., Bolin R.A., Chu M.C. 1990. Antibodies to Dengue 2 virus E-glycoprotein synthetic peptides identify antigenic conformation. Virology. 177, 668–675.CrossRefPubMedGoogle Scholar
  17. 17.
    Allison S.L., Schalich J., Stiasny K., Mandl C.W., Kunz C., Heinz F.X. 1995. Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. J. Virol. 69, 695–700.PubMedGoogle Scholar
  18. 18.
    Stiasny K., Allison S.L., Marchler-Bauer A., Kunz C., Heinz F.X. 1996. Structural requirements for low-pH-induced rearrangements in the envelope glycoprotein of tick-borne encephalitis virus. J. Virol. 70, 8142–8147.PubMedGoogle Scholar
  19. 19.
    Modis Y., Ogata S., Clements D., Harrison S.C. 2004. Structure of the Dengue virus envelope protein after membrane fusion. Nature. 427, 313–320.CrossRefPubMedGoogle Scholar
  20. 20.
    Protopopova E.V., Khusainova A.D., Konovalova S.N., Loktev V.B. 1996. Production and characterization of anti-idiotype antibodies carrying hemagglutinating paratopes of tick-borne encephalitis virus on their surface. Vopr. Virusol. 2, 50–53.Google Scholar
  21. 21.
    Protopopova E.V., Sorokin A.V., Konovalova S.N., Kachko A.V., Netesov S.V., Loktev V.B. 1999. Human laminin binding protein as a cell receptor for tick-borne encephalitis virus. Zbl. Bacteriol. 289, 632–638.Google Scholar
  22. 22.
    Thepparit C., Smith D.R. 2004. Serotype-specific entry of Dengue virus into liver cells: identification of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a Dengue virus serotype 1 receptor. J. Virol. 78, 12647–12656.CrossRefPubMedGoogle Scholar
  23. 23.
    Loktev A.V., Kuvshinov V.N., Medlamed N.V., Ivanisenko V.A., Mishin V.P., Il'ichev A.A. 2002. Localization of the tick-borne encephalitis virus protein E antigenic determinant recognized by antihemagglutinating monoclonal antibodies using a peptide phage library. Vopr. Virusol. 47, 31–34.Google Scholar
  24. 24.
    Lvov D.K., Butenko A.M., Gromashevsky V.L., Larichev V.P., Gaidamovich S.Y., Vyshemirsky O.I., Zhukov A.N., Lazorenko V.V., Salko V.N., Kovtunov A.I., Galimzyanov K.M., Platonov A.E., Morozova T.N., Khutoretskaya N.V., Shishkina E.O., Skvortsova T.M. 2000. Isolation of two strains of West Nile virus during an outbreak in Southern Russia, 1999. Emerg. Infect. Dis. 6, 373–376.PubMedCrossRefGoogle Scholar
  25. 25.
    Gaidamovich S.Ya., Loktev V.B., Lavrova N.A. Cross reactivity between tick-borne encephalitis and Venezuelan equine encephalomyelitis viruses as revealed by monoclonal antibodies. Vopr. Virusol. 3, 221–225.Google Scholar
  26. 26.
    Ternovoi V.A., Shchelkanov M.Yu., Shestopalov A.M., Aristova V.A., Protopopova E.V., Gromashevsky V.L., Druzyaka A.V., Zolotykh S.I., Loktev V.B., Lvov D.K. 2004. West Nile virus revealed in birds in the Kulunda and Baraba lowlands (West Siberian flyway) in the summer-autumn period of 2002. Vopr. Virusol. 49, 52–56.PubMedGoogle Scholar
  27. 27.
    Gefter M.L., Margulies D.H., Scharft M.D. 1977. A simple method for polyethylene glycol-promoted hybridization of mouse myeloma cells. Somat. Cell. Genet. 3, 231–236.CrossRefPubMedGoogle Scholar
  28. 28.
    Razumov I.A., Agapov E.V., Pereboev A.V., Protopopova E.V., Lebedeva S.D., Loktev V.B. 1991. Antigenic structure of the Venezuelan equine encephalomyelitis E2 glycoprotein as analyzed with rat monoclonal antibodies. Vopr. Virusol. 36, 34–37.PubMedGoogle Scholar
  29. 29.
    Laemmli U.K. 1970. Cleavage of structural proteins dur-ing the assembly of the head of bacteriophage T4. Nature. 227, 680–685.CrossRefPubMedGoogle Scholar
  30. 30.
    Towbin H.T., Staehelin J.G. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA. 76, 4350–4354.PubMedGoogle Scholar
  31. 31.
    Towbin H., Gordon J. 1984. Immunoblotting and dot immunobinding: Current status and outlook. J. Immunol. Meth. 72, 313–340.Google Scholar
  32. 32.
    Shindyalov I.N., Bourne P.E. 1998. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. 11, 739–747.PubMedGoogle Scholar
  33. 33.
    Chambers T.J., Hanh C.S., Galler R., Rice C. M. 1990. Flavivirus genome organization, expression, and replication. Rev. Microbiol. 44, 649–688.Google Scholar
  34. 34.
    Heinz F.X., Roehrig J.T. 1990. Immunochemistry of viruses. The basis for serodiagnosis and vaccines. 2, 289–305.Google Scholar
  35. 35.
    Pletnev S.V., Zhang W., Mukhopadhyay S., Fisher B.R., Hernandez R., Brown D.T., Baker T.S., Rossmann M.G., Kuhn R.J. 2001. Locations of carbohydrate sites on alphavirus glycoproteins show that E1 forms an icosahedral scaffold. Cell. 105, 127–136.CrossRefPubMedGoogle Scholar
  36. 36.
    Kenneth R.G., McCairn T.J., Behtol K.B. 1983. Monoclonal antibodies. In: Gibridomy: novyi uroven' biologicheskogo analiza (Hybridomas: A New Level of Biological Analysis). Moscow: Meditsina.Google Scholar
  37. 37.
    Rudzevich T.N., Ternovoi V.A., Kazachinskaya E.I., Razumov I.A., Chepurnov A.A., Loktev V.B., Netesov S.V. 2003. Revealing antigenic determinants at the N-terminus of the Ebola virus VP35 protein using short recombinant fragments of this protein. Mol. Genet. Mikrobiol. Virusol. 2, 38–40.Google Scholar
  38. 38.
    Sorokin A.V., Kazachinskaia E.I., Ivanova A.V., Kachko A.V., Netesov S.V., Bukreyev A.A., Loktev V.B., Razumov I.A. 2002. Mapping of two dominant sites of VP35 of Marburg virus. Viral Immunol. 15, 481–493.CrossRefPubMedGoogle Scholar
  39. 39.
    Cheshenko N.V., Petrov V.S., Protopopova E.V., Netesova N.A., Konovalova S.N., Belavin P.A., Loktev V.B., Malygin E.G. 1997. Recombinant vaccine virus expressing the Japanese encephalitis virus E protein. Mol. Genet. Mikrobiol. Virusol. 3, 24–27.Google Scholar
  40. 40.
    Belavin P.A. Netesova N.A., Reshetnikov S.S., Ivanisenko V.A., Eroshkin A.M., Protopopova E.V., Loktev V.B., Malygin E.G. 1997. Expression of Japanese encephalitis virus E gene fragments in Escherichia coli cells. Biotekhnologiya. 3, 3–9.Google Scholar
  41. 41.
    Butrapet S., Kimura-Kuroda J., Zhou D.-Sh., Yasui K. 1998. Neutralizing mechanism of a monoclonal antibody against Japanese encephalitis virus glycoprotein E. Am. J. Trop. Med. Hyg. 58, 389–398.PubMedGoogle Scholar
  42. 42.
    Beasley D.W.C., Barrett A.D.T. 2002. Identification of neutralizing epitopes within structural domain III of the West Nile virus envelope protein. J. Virol. 76, 13097–13100.PubMedGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • M. V. Bogachek
    • 1
  • E. V. Protopopova
    • 1
  • V. A. Ternovoi
    • 1
  • A. V. Kachko
    • 1
  • A. V. Ivanova
    • 1
  • V. A. Ivanisenko
    • 2
  • V. B. Loktev
    • 1
  1. 1.Vector State Research Center of Virology and BiotechnologyKoltsovo, Novosibirsk RagionRussia
  2. 2.Institute of Cytology and Genetics, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations