Molecular Biology

, Volume 39, Issue 4, pp 514–528 | Cite as

Photoreceptor Apparatus of the Fungus Neurospora crassa

  • M. S. Kritsky
  • T. A. Belozerskaya
  • V. Yu. Sokolovsky
  • S. Yu. Filippovich
Review and Experimantal Articles


Light governs a number of vitally important functions of the ascomycete fungus Neurospora crassa by controlling the expression of genes responsible for differentiation of reproductive structures, synthesis of secondary metabolites, and the circadian oscillator activity. Illumination also affects electrogenic processes in cell membranes and the activity and molecular organization of some enzymes. A major but probably not the sole photoreceptor pigment in Neurospora cells is WCC, a heterodimeric complex formed by the PAS-domain-containing polypeptides WC-1 and WC-2, the products of genes white collar-1 and white collar-2. Mutations in any of these genes arrest the majority of fungus responses to light. The photoreceptor belongs to the recently discovered large group of nonhomologous light-sensitive proteins whose molecules bind flavin coenzymes as photosensor chromophores. The photosignal transduction is started by excitation and photochemical activity of an excited FAD molecule noncovalently bound by the LOV domain (a specialized variant of the PAS domain of the WC-1 apoprotein). The presence of zinc fingers (the motives recognizing GATA sequences in promoter) in both WC-1 and WC-2 proteins suggests that these motifs might function as transcription factors. However, a critical analysis of the photoinduction mechanism has shown that the promoters of light-sensitive genes do not contain a common cis-acting element, thereby suggesting that some alternative mechanisms underlie photoregulated gene activity.

Key words

fungi light Neurospora crassa ontogeny carotenoids photoreceptor white collar PAS domain LOV domain FMN FAD light-sensitive genes circadian rhythm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kritsky M.S., Belozerskaya T.A. 1973. Analysis of acid-soluble nucleotides and nucleic acids from fruit bodies of the fungus Lantinus tigrinus Pr. with difdferent patterns of morphogenesis. Biokhimiya. 33, 874–883.Google Scholar
  2. 2.
    Kritsky M., Belozerskaya T., Sokolovsky V. 1994. Photoreceptor mechanisms of Neurospora crassa. Soviet Scientific Reviews/Section D. Physicochem. Biol. Rev. 12, 101–132.Google Scholar
  3. 3.
    Kritsky M.S. 1982. Photoregulation of metabolism and ontogeny in heterotrophic micoorganisms. Usp. Microbiol. 17, 41–62.Google Scholar
  4. 4.
    Briggs W.R., Beck C.F., Cashmore A.R., et al. 2001. The phototropin family of photoreceptors. Plant Cell. 13, 993–997.CrossRefPubMedGoogle Scholar
  5. 5.
    Cashmore A.R., Jarillo J.A., Wu Y-J., Liu D. 1999. Cryptochromes: Blue light receptors for plants and animals. Science. 284, 760–765.Google Scholar
  6. 6.
    Iseki M., Matsunaga S., Murakami A., et al. 2002. A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature. 415, 1047–1051.Google Scholar
  7. 7.
    Kraft B.J., Masuda S., Kikuchi J., et al. 2003. Spectroscopic and mutational analysis of the blue-light photoreceptor AppA: A novel photocycle involving flavin stacking with an aromatic amino acid. Biochemistry. 42, 6726–6734.CrossRefPubMedGoogle Scholar
  8. 8.
    De la Rosa M.A., Navarro J.A., Roncel M., et al. 1991. Flavin-photosensitized oxidation of redox proteins. Trends Photochem. Photobiol. 2, 155–167.Google Scholar
  9. 9.
    Galagan J.E., Calvo S.E., Borkovich K.A., et al. 2003. The genome sequence of the filamentous fungus Neurospora crassa. Nature. 422, 859–868.CrossRefPubMedGoogle Scholar
  10. 10.
    Borkovich K.A., Alex L.A., Jarden O., et al. 2004. Lessons from the genome sequence of Neurospora crassa: Tracing the path from genomic blueprint to multicellular organism. Microbiol. Mol. Biol. Rev. 68, 1–108.CrossRefPubMedGoogle Scholar
  11. 11.
    Potapova T.V., Levina N.N., Belozerskaya T.A., Kritsky M.S., Chailakhian L.M. 1984. Investigation of electrophysiological responses of Neurospora crassa to blue light. Archiv. Microbiol. 137, 262–265.CrossRefGoogle Scholar
  12. 12.
    Belozersksaya T.A. 1996. Functional role of H-ATPase of the fungal cell plasma membrane. Usp. Biol. Khim. 36, 113–139.Google Scholar
  13. 13.
    Belozerskaya T.A., Potapova T.V. 1993. Intrahyphal communication in segmented mycelium. Exp. Mycol. 17, 157–169.CrossRefGoogle Scholar
  14. 14.
    Harding R.W., Turner R.V. 1981. Photoregulation of the carotenoid biosyntesis pathway in albino and white collar mutants of Neurospora crassa. Plant Physiol. 68, 745–749.Google Scholar
  15. 15.
    Perkins D.D., Radford A., Sachs M.S. 2001. The Neurospora Compedium. Chromosomal Loci. San Diego: Academic.Google Scholar
  16. 16.
    Lyudnikova T.A., Chernysheva E.K., Bezzybov A.A., Kritsky M.S. 1990. Interrelation of phospholipid fatty acid desaturation and carotenoid synthesis upon adaptation of Neurospora crassa to heat and light exposure. Biokhimiya. 55, 2211–2220.Google Scholar
  17. 17.
    Belezerskaya T.A., Potapova T.V., Isakova E.P., et al. 2003. Energy status of Neurospora crassa mutant nap in relation to accumulation of carotenoids. J. Microbiol. 41, 41–45.Google Scholar
  18. 18.
    Ogura Y., Yoshido Y., Ichimura K., et al. 1999. Isolation and characterization of Neurospora crassa nucleoside diphosphate kinase NDK-1. Eur. J. Biochem. 266, 709–714.CrossRefPubMedGoogle Scholar
  19. 19.
    Sokolovsky V.Yu, Kritsky M.S. 1985. Photoregulation of cAMP phosphodiesterase in Neurospora crassa. Dokl. Akad. Nauk SSSR. 282, 1017–1020.Google Scholar
  20. 20.
    Afanasieva T.P., Filippovich S.Yu., Sokolovsky V.Yu., Kritsky M.S. 1982. Developmental regulation of NAD+ kinase in Neurospora crassa. Arch. Microbiol. 133, 307–311.CrossRefPubMedGoogle Scholar
  21. 21.
    Roldan M., Bulter W.L. 1980 Photoactivation of nitrate reductase from Neurospora crassa. Photochem. Photobiol. 32, 375–381.Google Scholar
  22. 22.
    Eker A.P.M., Ajima Y., Asui A. 1994. DNA photolyase from the fungus Neurospora crassa: Purification, characterization and comparison with other photolyases. Photochem. Photobiol. 60, 125–133.PubMedGoogle Scholar
  23. 23.
    Sokolovsky V.Yu., Belozerskaya T.A. 2000. Effect of stress factors on differential gene expression in the course of Neurospora crassa. Usp. Sovrem. Biol. 40, 85–152.Google Scholar
  24. 24.
    Ninnemann H. 1991. Photostimulation of conidiation in mutants of Neurospora crassa. J. Photochem. Photobiol. B: Biol. 9, 189–199.CrossRefGoogle Scholar
  25. 25.
    Kritsky M.S., Russo V.E.A., Filippovich S.Yu., Afanasieva T.P., Bachurina G.P. 2002. The opposed effect of 5-azacytidine and light on the development of reproductive structures in Neurospora crassa. Photochem. Photobiol. 75, 79–83.CrossRefPubMedGoogle Scholar
  26. 26.
    Harding R.W., Melles S. 1983. Genetic analysis of phototropism of Neurospora crassa perithecial beaks using white collar and albino mutants. Plant Phisiol. 72, 996–1000.Google Scholar
  27. 27.
    Lakin-Thomas P.L., Brody S. 2004. Circadian rhythm in microorganisms: New complexities. Annu. Rev. Microbiol. 58, 489–519.CrossRefPubMedGoogle Scholar
  28. 28.
    Degli-Innocenti F., Russo V.E. 1984. Isolation of new white collar mutants of Neurospora crassa and studies on their behavior in the blue light-induced formation of protoperithecia. J. Bacteriol. 159, 757–761.PubMedGoogle Scholar
  29. 29.
    Linden H., Ballario P., Macino G. 1997. Blue light regulation in Neurospora crassa. Fungal Genet. Biol. 22, 141–150.CrossRefPubMedGoogle Scholar
  30. 30.
    Levina N.N., Belozerskaya T.A., Kritsky M.S., Potapova T.V. 1988. Photoelectrical responses of Neurospora crassa mutant white collar-1. Exp. Mycol. 12, 77–79.Google Scholar
  31. 31.
    Ballario P., Vittorioso P., Magrelli A., et al. 1996. White collar-1, a central regulator of blue light responses in Neurospora, is a zing finger protein. EMBO J. 15, 1650–1657.PubMedGoogle Scholar
  32. 32.
    Linden H., Macino G. 1997. White collar-2, a partner in blue light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. EMBO J. 16, 98–109.CrossRefPubMedGoogle Scholar
  33. 33.
    Ballario P., Macino G. 1997. White collar proteins: passing the light signal in Neurospora crassa. Trends Microbiol. 5, 458–462.CrossRefPubMedGoogle Scholar
  34. 34.
    Zhulin I.B., Taylor B.L. 1997. PAS domain S-boxes in Archea, Bacteria and sensors for oxygen and redox. Trends Biochem. Sci. 22, 331–333.CrossRefPubMedGoogle Scholar
  35. 35.
    Taylor B.L., Zhulin I.B. 1999. PAS domains: Internal sensors of oxygen, redox potential and light. Microbiol. Mol. Biol. Rev. 63, 479–506.PubMedGoogle Scholar
  36. 36.
    Huala E., Oeller P.W., Liscum E., Han I-S., Larsen E., Briggs W.R. 1997. Arabidopsis NPH1: A protein kinase with a putative redox-sensing domain. Science. 278, 2120–2123.Google Scholar
  37. 37.
    Talora C., Franchi L., Linden H., Ballario P., Macino G. 1999. Role of a white collar-1-white collar-2 complex in blue-light signal transduction. EMBO J. 18, 4961–4968.CrossRefPubMedGoogle Scholar
  38. 38.
    Ballario P., Talora C., Galli D., Linden H., Macino G. 1998. Roles in dimerization and blue light photoresponse of the PAS and LOV domains of Neurospora crassa white collar proteins. Mol. Microbiol. 29, 719–729.CrossRefPubMedGoogle Scholar
  39. 39.
    Cheng P., Yang Y., Wang L., He Q., Liu Y. 2003. White collar-1, a multifunctional Neurospora protein involved in the circadian feedback loops, light sensing, and transcription repression of WC-2. J. Biol. Chem. 278, 3801–3808.CrossRefPubMedGoogle Scholar
  40. 40.
    Froelich A.C., Liu Y., Loros J.J., Dunlap J.C. 2002. White collar-1, a circadian blue light photoreceptor, binds to the frequency promoter. Science. 297, 815–819.Google Scholar
  41. 41.
    He Q., Cheng P., Yang Y., Wang L., Gardner K.H., Liu Y. 2002. White collar-1, a DNA binding transcription factor and light sensor. Science. 297, 840–843.Google Scholar
  42. 42.
    Christie J.M., Reimond P., Powell G.K., et al. 1998. Arabidopsis NPH1: A flavoprotein with the properties of a photoreceptor for phototropism. Science. 282, 1698–1701.Google Scholar
  43. 43.
    Cheng P., He Q., Yang Y., Wang J., Liu Y. 2003. Functional conservation of light, oxygen, or voltage domains in light sensing. Proc. Natl. Acad. Sci. USA. 100, 5938–5943.CrossRefPubMedGoogle Scholar
  44. 44.
    Christie J.M., Briggs W.R. 2001. Blue light sensing in higher plants. J. Biol. Nhem. 276, 11457–11460.CrossRefGoogle Scholar
  45. 45.
    Macino G., Arpaia G., Linden H., Ballario P. 1998. Responses to blue light in Neurospora crassa. Symp. Soc. Gen. Microbiol. 56, 213–224.Google Scholar
  46. 46.
    Scazzocchio C. 2000. The fungal GATA factors. Curr. Opin. Microbiol. 3, 126–131.CrossRefPubMedGoogle Scholar
  47. 47.
    Heelis P.F. 1982. The photophysical and photochemical properties of flavins (isoalloxazines). Chem. Soc. Rev. 11, 15–39.CrossRefGoogle Scholar
  48. 48.
    Presti D.E. 1983. The photobiology of carotenes and flavins. In: The Biology of Photoreceptors. Eds. Cosens D.E., Vince-Price D. Symp. Soc. Exp. Biol., 133–180.Google Scholar
  49. 49.
    Neverov K.V., Mironov E.A., Lyudnikova T.A., Krasnovsky A.A., Jr., Kritsky M.S. 1996. Phosphorescence analysis of the triplet state of pterins in relation to their photoreceptor function in biochemical systems. Biokhimiya. 61, 1627–1635.Google Scholar
  50. 50.
    Egorov S.Yu., Krasnovsky A.A., Jr., Bashtanov M.E., Mironov E.A., Lyudnikova T.A., Kritsky M.S. 1999. Analysis of singlet molecular oxygen formation by pterins and flavins upon photosensitization using time-resolved measurement of laser-excited oxygen phosphorescence. Biokhimiya. 64, 1325–1330.Google Scholar
  51. 51.
    Sun M., Moore T.A., Song P.-S. 1972. Molecular luminescence studies of flavins: 1. The excited states of flavins. J. Am. Chem. Soc. 94, 1730–1740.CrossRefPubMedGoogle Scholar
  52. 52.
    Hemmerich P., Haas W. 1975. Long wave absorption of dihydroflavin derivatives sigmatropic alkyl shifts in dihydroflavins. In: Reactivity of Flavins. Ed. Yagi K. Tokyo: Univ. of Tokyo Press. 1–14.Google Scholar
  53. 53.
    Swartz T.E., Corchnoy S.B., Christie J.M., et al. 2001. The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin. J. Biol. Chem. 276, 36493–36500.CrossRefPubMedGoogle Scholar
  54. 54.
    Salomon M., Christie J.M., Knieb E., et al. 2000. Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry. 39, 9401–9410.CrossRefPubMedGoogle Scholar
  55. 55.
    Kasahara M., Swartz T.E., Olney M.A., et al. 2002. Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis, rice, and Chlamydomonas renhardtii. Plant Physiol. 129, 762–773.CrossRefPubMedGoogle Scholar
  56. 56.
    Schwerdtfeger C., Linden H. 2003. VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J. 22, 4846–4855.CrossRefPubMedGoogle Scholar
  57. 57.
    Heintzen C., Loros J.J., Dunlap J.C. 2001. The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting. Cell. 104, 453–464.CrossRefPubMedGoogle Scholar
  58. 58.
    Shrode L.B., Lewis Z.A., White L.D., et al. 2001. vvd is required for light adaptation of conidiation-specific genes of Neurospora crassa, but not circadian conidiation. Fungal Genet. Biol. 32, 169–181.CrossRefPubMedGoogle Scholar
  59. 59.
    Campbell W.H. 1999. Nitrate reductase structure, function and regulation: Bridging the gap between biochemistry and physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 277–303.CrossRefPubMedGoogle Scholar
  60. 60.
    Azuara M.P., Aparicio P.J. 1983. In vivo blue-light activation of Chlamydomonas reinhardii nitrate reductase. Plant Physiol. 71, 286–290.Google Scholar
  61. 61.
    Kritsky M.S., L’vov N.P. 1992. Flavoproteins as natural prototypes of molecular electronic devices with photocontrolled conductivity. J. Br. Interplanet. Soc. 45, 421–426.Google Scholar
  62. 62.
    Klemm E., Ninnemann H. 1979. Nitrate reductase is a key enzyme in blue light-promoted conidiation and absorbance change of Neurospora. Photochem. Photobiol. 29, 629–632.PubMedGoogle Scholar
  63. 63.
    Munoz V., Brody S., Butler W.L. 1974. Photoreceptor pigment for blue light responses in Neurospora crassa. Biochem. Biophys. Res. Commun. 58, 322–327.CrossRefPubMedGoogle Scholar
  64. 64.
    Brain R.D., Freeberg J.A., Weiss C.V., Briggs W.R. Blue light-induced absorbance changes in membrane fractions from corn and Neurospora. Plant Physiol. 59, 948–952.Google Scholar
  65. 65.
    Belozerskaya T.A., Burikhanov S.S., Chernysheva E.K., Kritsky M.S., L’vov N.P. 1982. Does nitrate reductase play a key role in photoinduction of carotenoid synthesis in Neurospora crassa? Neurospora Newsl. 29, 14–15.Google Scholar
  66. 66.
    Paietta J., Sargent M.L. 1982. Blue light responses in nitrate reductase mutants of Neurospora crassa. Photochem. Photobiol. 35, 853–855.Google Scholar
  67. 67.
    Todo T. 1999. Functional diversity of the DNA photolyase/blue light receptor family. Mutat. Res. 434, 89–97.PubMedGoogle Scholar
  68. 68.
    Nawrath C., Russo V.E.A. 1990. Fast induction of translatable mRNA by blue light in Neurospora crassa wt: The wc-1 and wc-2 mutants are blind. J. Photochem. Photobiol. B: Biol. 4, 261–271.CrossRefGoogle Scholar
  69. 69.
    Lauter F.-R. 1996. Molecular genetics of fungal photobiology. J. Genet. 75, 375–386.Google Scholar
  70. 70.
    Sommer T., Chambers J.A.A., Eberle J., Lauter F.-R., Russo V.E.A. 1989. Fast light-regulated genes of Neurospora crassa. Nucleic Acids Res. 14, 5713–5723.Google Scholar
  71. 71.
    Schmidhauser T.J., Lauter F.-R., Russo V.E.A., Yanofsky C. 1990. Cloning, sequence, and photoregulation of al-1, a carotenoid biosynthetic gene of Neurospora crassa. Mol. Cell. Biol. 10, 5064–5070.PubMedGoogle Scholar
  72. 72.
    Schmidhauser T.J., Lauter F.-R., Schuhmacher M., et al. 1994. Characterization of al-2, the phytoene synthase gene of Neurospora crassa. J. Biol. Chem. 269, 12060–12066.PubMedGoogle Scholar
  73. 73.
    Nelson M.A., Morelli G., Carattoli A., Romano N., Macino G. 1989. Molecular cloning of a Neurospora crassa carotenoid biosynthetic gene (albino-3) regulated by blue light and the products of the white collar genes. Mol. Cell. Biol. 9, 1271–1276.PubMedGoogle Scholar
  74. 74.
    Bell-Pedersen D., Shinoshara M.L., Loros J.J., Dunlap J.C. 1996. Circadian clock-controlled genes isolated from Neurospora crassa are late night-and early morning-specific. Proc. Natl. Acad. Sci. USA. 93, 13096–13101.CrossRefPubMedGoogle Scholar
  75. 75.
    Lauter F.-R., Russo V.E.A. 1991. Blue light induction of conidiation specific genes in Neurospora crassa. Nucleic. Acids Res. 19, 6883–6886.PubMedGoogle Scholar
  76. 76.
    Lauter F.-R., Yanofsky C. 1993. Day/night and circadian rhythm control of con gene expression in Neurospora. Proc. Natl. Acad. Sci. USA. 90, 8249–8253.PubMedGoogle Scholar
  77. 77.
    Lauter F.-R., Marchfelder U., Russo V.E.A., Yamashiro C.T., Yatzkan E., Yarden O. 1998. Photoregulation of cot-1, a kinase encoding gene involved in hyphal growth in Neurospora crassa. Fungal Genet. Biol. 23, 300–310.CrossRefGoogle Scholar
  78. 78.
    Crosthwaite S., Loros J.J., Dunlap J.C. 1995. Light-induced resetting of the circadian clock is mediated by rapid increase in frequency transcript. Cell. 81, 1003–1012.CrossRefPubMedGoogle Scholar
  79. 79.
    Arpaia G., Loros J.J., Dunlap J.C., Morelli G., Macino G. 1995. The circadian-controlled gene ccg-1 is induced by light. Mol. Gen. Genet. 247, 157–163.CrossRefPubMedGoogle Scholar
  80. 80.
    Lauter F.-R., Russo V.E.A., Yanofsky C. 1992. Developmental and light regulation of eas, the structural gene for the rodlet protein of Neurospora. Genes Dev. 6, 2373–2381.PubMedGoogle Scholar
  81. 81.
    Lewis Z.A, Correa A., Schwerdtfeger C., et al. 2002. Overexpression of White Collar-1 (WC-1) activates circadian clock-associated genes, but is not sufficient to induce most light-regulated gene expression in Neurospora crassa. Mol. Microbiol. 45, 917–931.CrossRefPubMedGoogle Scholar
  82. 82.
    Carattoli A., Cognoli C., Morelli G., Macino G. 1994. Molecular characterization of upstream regulatory sequences controlling the photoinduced expression of albino-3 gene of Neurospora crassa. Mol. Microbiol. 13, 787–795.PubMedGoogle Scholar
  83. 83.
    Baima S., Macino G., Morelli G. 1991. Photoregulation of albino-3 gene in Neurospora crassa conidia. J. Photochem. Photobiol. B: Biol. 11, 107–115.CrossRefGoogle Scholar
  84. 84.
    Bell-Pedersen D., Dunlap J.C., Loros J.J. 1996. Distinct cis-acting elements mediate clock, light, and development regulation of the Neurospora crassa eas (ccg-2) gene. Mol. Cell. Biol. 16, 513–521.PubMedGoogle Scholar
  85. 85.
    Corrochano L.M., Lauter F.-R., Ebbole D., Yanofsky C. 1995. Light and developmental regulation of the gene con-10 of Neurospora crassa. Dev. Biol. 167, 190–200.CrossRefPubMedGoogle Scholar
  86. 86.
    Pietschmann S., Eberle J., Lauter F.-R., et al. 1991. Co-regulation of two tandem genes by one blue-light element in Neurospora crassa. Fungal Genet. Newsl. 38, 85–86.Google Scholar
  87. 87.
    Morgan L.W., Greene A.V., Bell-Pedersen D. 2003. Circadian and light-induced expression of luciferase in Neurospora crassa. Fungal Genet. Biol. 38, 327–332.CrossRefPubMedGoogle Scholar
  88. 88.
    Kaldenhoff R., Russo V.E.A. 1993 Promoter analysis of the bli-7/eas gene. Curr. Genet. 24, 394–399.CrossRefPubMedGoogle Scholar
  89. 89.
    Crosthwhite S.K., Dunlap J.C., Loros J.J. 1997. Neurospora wc-1 and wc-2 transcription, photoresponses, and the origins of circadian rhythmicity. Science. 276, 763–769.Google Scholar
  90. 90.
    Eberle J., Russo V.E.A. 1992. Neurospora crassa blue light-inducible gene bli-7 encodes a short hydrophobic protein. DNA Sequence. 3, 737–744.Google Scholar
  91. 91.
    Kritsky M.S., Sokolovsky V.Yu., Belozerskaya T.A., Chernysheva E.K. 1981. Involvements of cAMP in light-regulated carotenoid synthesis in Neurospora crassa. Dokl. Akad. Nauk SSSR. 258, 759–762.PubMedGoogle Scholar
  92. 92.
    Irelan J.T., Selker E.U. 1997. Cytosine methylation associated with repeat-induced point mutation causes epigenetic gene silencing in Neurospora crassa. Genetics. 146, 509–523.PubMedGoogle Scholar
  93. 93.
    Filippovich S.Yu., Bachurina G.P., Kritsky M.S. 2004. Effect on 5-azacytidine on light-sensitive formation of sexual and asexual reproductive structures in Neurospora crassa wc-1 and wc-2 mutants. Prikl. Biokhim. Mikrobiol. 40, 466–471.PubMedGoogle Scholar
  94. 94.
    Kritsky M.S., Sokolovsky V.Yu., Belozerskaya T.A., Chernysheva E.K. 1982. Relationship between cyclic AMP level and accumulation of carotenoid pigment in Neurospora crassa. Arch. Microbiol. 133, 206–208.CrossRefGoogle Scholar
  95. 95.
    Wang Z., Deak M. Free S.J. 1994. A cis-acting region required for the regulated expression of grg-1, a Neurospora glucose-repressible gene. Two regulatory sites (CRE and NRS) are required to repress grg-1 expression. J. Mol. Biol. 237, 65–74.CrossRefPubMedGoogle Scholar
  96. 96.
    Arpaia G., Cerri F., Baima S., Macino G. 1999 Involvement of protein kinase C in response of Neurospora crassa to blue light. Mol. Gen. Genet. 262, 314–322.CrossRefPubMedGoogle Scholar
  97. 97.
    Bruchez J.J.P., Eberle J., Kohler W., Kruft V., Radford A., Russo V.E.A. 1996. bli-4, a gene that is rapidly induced by blue light, encodes a novel mitochondrial, short-chain alcohol dehydrogenase-like protein in Neurospora crassa. Mol. Gen. Genet. 252, 223–229CrossRefPubMedGoogle Scholar
  98. 98.
    Bell-Pedersen D., Dunlap J.C., Loros J.J. 1992. The Neurospora circadian clock-controlled gene, ccg-2, is allelic to eas and encodes a fungal hydrophobin required for formation of the conidial rodlet layer. Genes Dev. 6, 2382–2394.PubMedGoogle Scholar
  99. 99.
    Shinohara M.L., Correa A., Bell-Pedersen D., Dunlap J.C., Loros J.J. 2002. Neurospora clock-controlled gene 9 (ccg-9) encodes trehalose synthase: circadian regulation of stress responses and development. Eukaryot. Cell. 1, 33–43.CrossRefPubMedGoogle Scholar
  100. 100.
    Yarden O., Plamann M., Ebbole D.J., Yanofsky C. 1992. cot-1, a gene required for hyphal elongation in Neurospora crassa encodes a protein kinase. EMBO J. 11, 2159–2166.PubMedGoogle Scholar
  101. 101.
    McClung C.R., Fox B.A., Dunlap J.C. 1989. The Neurospora clock gene frequency shares a sequence element with the Drosophila clock gene period. Nature. 339, 558–562.Google Scholar
  102. 102.
    Dunlap J.C. 1993. Genetic analysis of circadian clocks. Ann. Rev. Physiol. 55, 683–728.CrossRefGoogle Scholar
  103. 103.
    Sargent M.L., Briggs W.R., Woodward D.O. 1966. Circadian nature of a rhythm expressed by an invertaseless strain of Neurospora crassa. Plant Physiol. 41, 1343–1349.PubMedGoogle Scholar
  104. 104.
    Lee K., Dunlap J.C., Loros J.J. 2003. Roles of WHITE COLLAR-1 in circadian and general photoreception in Neurospora crassa. Genetics. 163, 103–114.PubMedGoogle Scholar
  105. 105.
    Merrow M., Garceau N.Y., Dunlap J.C. 1997. Linearizing circadian cycle to determine kinetic constants within the feedback loop. Proc. Natl. Acad. Sci. USA. 94, 3877–3882.CrossRefPubMedGoogle Scholar
  106. 106.
    Garceau N.Y., Liu Y., Loros J.J., Dunlap J.C. 1997. Alternative intiation of translation and time-specific phosphorylation yield multiple forms of the essential cock protein FREQUENCY. Cell. 89, 469–476.CrossRefPubMedGoogle Scholar
  107. 107.
    Liu Y., Garceau N.Y., Loros J.J., Dunlap J.C. 1997. Thermally regulated translational control of FRQ mediates aspects of temperature responses in the Neurospora circadian clock. Cell. 89, 477–486.CrossRefPubMedGoogle Scholar
  108. 108.
    Luo C., Loros J.J., Dunlap J.C. 1998. Nuclear localization is required for function of the essential clock protein FREQUENCY. EMBO J. 17, 1228–1235.CrossRefPubMedGoogle Scholar
  109. 109.
    Nowrousian M., Duffield G.E., Loros J.J., Dunlap J.C. 2003. The frequency gene is required for temperature-dependent regulation of many clock-controlled genes in Neurospora crassa. Geneics. 164, 922–933.Google Scholar
  110. 110.
    Loros J.J., Denome S.A., Dunlap J.C. 1989. Molecular cloning of genes under control of the circadian clock in Neurospora. Science. 243, 385–388.Google Scholar
  111. 111.
    McNally M.T., Free S.J. 1988. Isolation and characterization of a Neurospora glucose-repressible gene. Curr. Genet. 14, 545–551.CrossRefPubMedGoogle Scholar
  112. 112.
    Arpaia G., Caratolli A., Macino G. 1995. Light and development regulate the expression of the albino-3 gene in Neurospora crassa. Dev. Biol. 170, 626–635.CrossRefPubMedGoogle Scholar
  113. 113.
    Cheng P., He Q., Yang Y., Gardner K.H., Liu Y. 2002. PAS domain-mediated WC-1/WC-2 interaction is essential for maintaining the steady-state level of WC-1 and the function of both proteins in circadian clock and light responses in Neurospora. Mol. Cell Biol. 22, 517–524.CrossRefPubMedGoogle Scholar
  114. 114.
    Yang Y., Cheng P., Liu Yi. 2002. Regulation of the Neurospora circadian clock by casein kinase II. Genes Devel. 16, 994–1006.CrossRefPubMedGoogle Scholar
  115. 115.
    Christensen M.K., Falkeid J., Loros J.J., Dunlap J.C., Lillo C., Ruoff P. 2004. A nitrate-induced frq-free oscillator in Neurospora crassa. J. Biol. Rhythm. 19, 280–286.CrossRefGoogle Scholar
  116. 116.
    Csaba G. 1994. Phylogeny and ontogeny of chemical signaling: Origin and development of hormone receptors. Int. Rev. Cytol. 155, 1–48.PubMedGoogle Scholar
  117. 117.
    Hansberg W., Aguirre J. 1990. Hyperoxidant states cause microbial cell differentiation by cell isolation from dioxygen. J. Theor. Biol. 142, 201–221.PubMedGoogle Scholar
  118. 118.
    Kritsky M.S., Telegina T.A. 2004. Role of nucleotide-like coenzymes in primitive evolution. In: Origins: Genesis, Evolution and Diversity of Life. Ed. Seckbach J. Dordrecht: Kluwer, pp. 215–231.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • M. S. Kritsky
    • 1
  • T. A. Belozerskaya
    • 1
  • V. Yu. Sokolovsky
    • 1
  • S. Yu. Filippovich
    • 1
  1. 1.Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations