Molecular Biology

, Volume 39, Issue 3, pp 430–437 | Cite as

Computer Analysis of Conformational and Physicochemical Properties of Nucleotide Sequences Cleavable by DNA Topoisomerase I

  • D. Yu. Oshchepkov
  • D. V. Bugreev
  • N. A. Kolchanov
  • G. A. Nevinsky
Molecular Mechanisms of Biological Processes


DNA binding with enzymes is followed by specific adaptation of the DNA structure, including partial or almost complete melting, structural changes in the sugar-phosphate backbone, stretching, compressing, bending or kinking, base flipping, etc. The set of conformational changes is individual for each enzyme and is aimed at efficiently adjusting the orbitals of the reacting groups of the enzyme and the specific DNA site to 10°–15°. The efficiency of nucleotide sequence adaptation determined by the enzyme depends on several structural characteristics. Optimal adjustment is achieved only in the case of specific DNA sequences; as a result, the reaction rate is four to eight orders of magnitude higher with specific than with nonspecific sequences. DNA topoisomerase I (Topo) is a sequence-dependent enzyme. Although less efficiently, Topo cleaves sequences which differ considerably from the optimal sequence. A method based on the analysis of conformational and physicochemical properties of the DNA helix was used to examine many nucleotide sequences cleavable by Topo. The method yields detailed information on similarity or difference of DNA structural units. The cleavable sequences proved to be similar in roll, slide, twist, and rise. In addition, all sequences had sterically disadvantageous contacts between N3 and NH2 of guanines and N3 of adenines in the minor groove, which corresponded to the presence of dinucleotides Py-Pu in the cleavage site. DNA bending towards the major groove is easier in the case of the optimal sequence. This method is promising for analyzing the efficiency of nucleic acid cleavage by various DNA- and RNA-dependent enzymes.

Key words

DNA topoisomerase I DNA cleavage specificity cleavable sequences structural peculiarities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang J.C. 1996. DNA Topoisomerases. Annu. Rev. Biochem. 65, 635–692.PubMedGoogle Scholar
  2. 2.
    Andoh T., Ikeda H., Aguro M. 1993. In: Molecular Biology of DNA Topoisomerase and Its Application to Chemotherapy. Boca Raton: CRC Press.Google Scholar
  3. 3.
    Wang H.K., Morris-Natschke S.L., Lee K.H. 1977. Recent advances in the discovery and development of topoisomerase inhibitors as antitumor agents. Med. Res. Rev. 17, 367–425.Google Scholar
  4. 4.
    Stewart L., Ireton G.C., Champoux J.J. 1996. The domain organization of human topoisomerase I. J. Biol. Chem. 271, 7602–7608.PubMedGoogle Scholar
  5. 5.
    Alsner J., Svejstrup J.Q., Kjeldsen E., Sorensen B.S., Westergaard O. 1992. Identification of an N-terminal domain of eukaryotic DNA topoisomerase I dispensable for catalytic activity but essential for in vivo function. J. Biol. Chem. 267, 12408–12411.PubMedGoogle Scholar
  6. 6.
    Bharti A.K., Olson M.O., Kufe D.W., Rubin E.H. 1996. Identification of a nucleolin binding site in human topoisomerase I. J. Biol. Chem. 271, 1993–1997.PubMedGoogle Scholar
  7. 7.
    Stewart L., Ireton G.C., Champoux J.J. 1997. Reconstitution of human topoisomerase I by fragment complementation. J. Mol. Biol. 269, 355–372.PubMedGoogle Scholar
  8. 8.
    Stewart L., Redinbo M.R., Qiu X., Hol W.G., Champoux J.J. 1998. A model for the mechanism of human topoisomerase I. Science. 279, 1534–1541.PubMedGoogle Scholar
  9. 9.
    Thomsen B., Mollerup S., Bonven B.J., Frank R., Blocker H., Nielsen O.F., Westergaard O. 1987. Sequence specificity of DNA topoisomerase I in the presence and absence of camptothecin. EMBO. J. 6, 1817–1823.PubMedGoogle Scholar
  10. 10.
    Busk H., Thomsen B., Bonven B.J., Kjeldsen E., Nielsen O.F., Westergaard O. 1987. Preferential relaxation of supercoiled DNA containing a hexadecameric recognition sequence for topoisomerase I. Nature. 327, 638–640.PubMedGoogle Scholar
  11. 11.
    Perez-Stable C., Shen C.C., Shen C.-K. J. 1988. Enrichment and depletion of HeLa topoisomerase I recognition sites among specific types of DNA elements. Nucleic Acids Res. 16, 7975–7993.PubMedGoogle Scholar
  12. 12.
    Shen C.C., Shen C.K. 1990. Specificity and flexibility of the recognition of DNA helical structure by eukaryotic topoisomerase I. J. Mol. Biol. 212, 67–78.PubMedGoogle Scholar
  13. 13.
    Bugreev D.V., Vasyutina E.L., Buneva V.N., Yasui Y., Nishizava M., Andoh T., Nevinsky G.A. 1997. High affinity interaction of mouse DNA topoisomerase I with di-and trinucleotides corresponding to specific sequences of supercoiled DNA cleaved chain. FEBS Lett. 407, 18–20.PubMedGoogle Scholar
  14. 14.
    Bugreev D.V., Vasutina E.L., Kolocheva T.I., Buneva V.N., Andoh T., Nevinsky G.A. 1998. Interaction of human DNA topoisomerase I with specific sequence oligodeoxynucleotides. Biochimie. 80, 303–308.PubMedGoogle Scholar
  15. 15.
    Bugreev D.V., Sinitsina O.I., Buneva V. N., Nevinsky G.A. 2003. Mechanism of supercoiled DNA recognition by eukaryotic topoisomerases I: 1. Interaction of enzymes with nonspecific oligonucleotides. Bioorg. Khim. 29, 163–174.PubMedGoogle Scholar
  16. 16.
    Bugreev D.V., Buneva V.N., Sinitsina O.I., Nevinsky G.A. 2003. Mechanism of supercoiled DNA recognition by eukaryotic topoisomerases I: 2. Somparison of enzyme interactions with specific and nonspecific oligonucleotides. Bioorg. Khim. 29, 275–288.Google Scholar
  17. 17.
    Bugreev D.V., Buneva V.N., Nevinsky G.A. 2003. Mechanism of supercoiled DNA cleavage by human DNA topoisomerase I: Effect of ligand structure of the catalytic stage of the reaction. Mol. Biol. 37, 1–15.CrossRefGoogle Scholar
  18. 18.
    Nevinsky G.A. 1995. The essential role of weak interactions in enzyme recognition of long DNA and RNA molecules. Mol. Biol. 29, 16–37.Google Scholar
  19. 19.
    Bugreev D.V., Nevinsky G.A. 1999. Potential of the method of stepwise complication of ligand structure in studies of protein-nucleic acid interactions: Mechanism of the functioning of some replication, repair, topoisomerization, and restriction enzymes. Biokhimiya. 64, 291–305.Google Scholar
  20. 20.
    Nevinsky G.A. 2004. The role of weak specific and non-specific interactions in enzymatic recognition and conversion of long DNAs. Mol. Biol. 38, 756–785.Google Scholar
  21. 21.
    Nevinsky G.A. 2003. Structural, thermodynamic, and kinetic basis of DNA-and RNA-dependent enzymes functioning. Important role of weak nonspecific additive interactions between enzymes and long nucleic acids for their recognition and transformation. In: Protein Structures. Kaleidoscope of Structural Properties and Functions. Eds. Uversky V.N., Fort P.O. Trivandrum: Research Signpost, pp. 133–222.Google Scholar
  22. 22.
    Stewart L., Redinbo M.R., Qiu X., Hol W.G., Champoux J.J. 1998. A model for the mechanism of human topoisomerase I. Science. 279, 1534–1541.PubMedGoogle Scholar
  23. 23.
    Redinbo M.R., Stewart L., Kuhn P., Champoux J.J., Hol W.G. 1998. Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. Science. 279, 1504–1513.CrossRefPubMedGoogle Scholar
  24. 24.
    Perez-Stable C., Shen C. C., Shen C.-K. J., 1988. Enrichment and depletion of HeLa topoisomerase I recognition sites among specific types of DNA elements. Nucleic Asids Res. 16, 7975–7993.Google Scholar
  25. 25.
    Oshchepkov D.Y., Vityaev E.E., Grigorovich D.A., Ignatieva E.V., Khlebodarova T.M. 2004. SITECON: A tool for detecting conservative conformational and physicochemical properties in transcription factor binding site alignments and for site recognition. Nucleic Acids Res. 32 (Web Server issue): W208-12.Google Scholar
  26. 26.
    Starr D.B., Hoopes B.C., Hawley D.K. 1995. DNA bending is an important component of site-specific recognition by the TATA binding protein. J. Mol. Biol. 250, 434–446.PubMedGoogle Scholar
  27. 27.
    Meierhans D., Sieber M., Allemann R.K. 1997. High affinity binding of MEF-2C correlates with DNA bending. Nucleic Acids Res. 25, 4537–4544.PubMedGoogle Scholar
  28. 28.
    Dickerson R.E., Drew H.R. 1981. Structure of a B-DNA dodecamer: 2. Influence of base sequence on helix structure. J. Mol. Biol. 149, 761–786.PubMedGoogle Scholar
  29. 29.
    Frank D.E., Saecker R.M., Bond J.P., Capp M.W., Tsodikov O.V., Melcher S.E., Levandoski M.M., Record M.T. 1997. Thermodynamics of the interactions of lac repressor with variants of the symmetric lac operator: Effects of converting a consensus site to a nonspecific site. J. Mol. Biol. 267, 1186–1206.PubMedGoogle Scholar
  30. 30.
    Suzuki M., Amano N., Kakinuma J., Tateno M. 1997. Use of 3D structure data for understanding sequence-dependent conformational aspects of DNA. J. Mol. Biol. 274, 421–435.PubMedGoogle Scholar
  31. 31.
    Mulligan M.E., Hawley D.K., Entriken R., McClure W.R. 1984. Escherichia noli promoter sequences predict in vitro RNA polymerase selectivity. Nucleic Acids Res. 12, 789–800.PubMedGoogle Scholar
  32. 32.
    Stormo G.D., Schneider T.D., Gild L. 1986. Quantitive analysis of the relationship between nucleotide sequence and functional activity. Nucleic Acids Res. 14, 6661–6679.PubMedGoogle Scholar
  33. 33.
    Berg, O.G., von Hippel P.H. 1988. Selection of DNA binding sites by regulatory proteins: 2. The binding specificity of cyclic AMP receptor protein to recognition sites. J. Mol. Biol. 193, 723–750.Google Scholar
  34. 34.
    Oshchepkov D.Yu., Turnaev I.I., Pozdnyakov M.A., Milanesi L., Vityaev E.E., Kolchanov N.A. 2004. SITE-CON, a tool for analysis of DNA physicochemical and conformational properties: E2F/DP transcription factor binding site analysis and recognition. In: Bioinformatics of Genome Regulation and Structure. Eds. Kolchanov N., Hofestaedt R. Boston, Dordrecht, London: Kluwer Acad. Publ., pp. 93–102.Google Scholar
  35. 35.
    Anderson T.W. 1958. An Introduction to Multivariate Statistical Analysis. N.Y.: Wiley.Google Scholar
  36. 36.
    Gorin A.A., Zhurkin V.B., Olson W.K. 1995. B-DNA twisting correlates with base-pair morphology. J. Mol. Biol. 247, 34–48.PubMedGoogle Scholar
  37. 37.
    Shpigelman E.S., Trifonov E.N., Bolshoy A. 1993. Curvature: Software for the analysis of curved DNA. Comput. Appl. Biosci. 9, 435–440.PubMedGoogle Scholar
  38. 38.
    Ponomarenko M.P., Ponomarenko Yu.V., Kel’ A.E., Kolchanov N.A., Karas Kh., Vingender E., and Sklenar Kh., 1997. Computer analysis of DNA conformational features in TATA boxes of eukaryotic promoters. Mol. Biol. 31, 733–740.Google Scholar
  39. 39.
    Hogan M.E., Austin R.H. 1987. Importance of DNA stiffness in protein-DNA binding specificity. Nature. 329, 263–266.PubMedGoogle Scholar
  40. 40.
    Gartenberg M.R., Crothers D.M. 1988. DNA sequence determinants of CAP-induced bending and protein binding affinity. Nature. 333, 824–829.PubMedGoogle Scholar
  41. 41.
    Redinbo M.R., Champoux J.J., Hol W.G. 2000. Novel insights into catalytic mechanism from a crystal structure of human topoisomerase I in complex with DNA. Biochemistry. 39, 6832–6840.PubMedGoogle Scholar
  42. 42.
    Saenger W. 1984. Principles of Nucleic Acid Structure. N.Y.: Springer.Google Scholar
  43. 43.
    Suck D. 1994. DNA recognition by DNase I. J. Mol. Recognit. 7, 65–70.PubMedGoogle Scholar
  44. 44.
    Bernardi A., Gaillard C., Bernardi G. 1975. The specificity of five DNAases as studied by the analysis of 5′-terminal doublets. Eur. J. Biochem. 52, 451–457.PubMedGoogle Scholar
  45. 45.
    Mehdi S., Gerlt J.A. 1984. Syntheses and configurational analyses of thymidine 4-nitrophenyl [17O,18O] phosphates and the stereochemical course of a reaction catalyzed by bovine pancreatic deoxyribonuclease I. Biochemistry. 23, 4844–4852.PubMedGoogle Scholar
  46. 46.
    Nevinsky G.A., Andreola M-L., Yamkovoy V.I., Levina A.S., Barr Ph.J., Tarrago-Litvak L., Litvak S. 1992. Functional analysis of primers and templates in the synthesis of DNA catalyzed by human immunodeficiency virus type 1 reverse transcriptase. Eur. J. Biochem. 207, 351–358.PubMedGoogle Scholar
  47. 47.
    Kolocheva T.A., Nevinsky G.A. 1993. Isolation of DNA polymerase b from the human placenta and analysis of its substrate specificity. Mol. Biol. 27, 1368–1379.Google Scholar
  48. 48.
    Lokhova I.A., Nevinsky G.A., Gorn V.V., Veniaminova A.G., Repkova M.V., Kavsan V.M., Rudenko N.K., Lavrik O.I. 1990. A comparison of the initiating abilities of ribo-and deoxyriboprimers in DNA polymerization catalyzed by AMV reverse transcriptase. FEBS Lett. 274, 156–158.PubMedGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • D. Yu. Oshchepkov
    • 1
  • D. V. Bugreev
    • 2
  • N. A. Kolchanov
    • 1
  • G. A. Nevinsky
    • 2
  1. 1.Institute of Cytology and GeneticsSiberian Division, Russian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Chemical Biology and Fundamental MedicineSiberian Division, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations