Molecular Biology

, Volume 39, Issue 1, pp 1–10 | Cite as

Why ribonucleases induce tumor cell death

  • O. N. Ilinskaya
  • A. A. Makarov


The characteristics and the possible mechanisms of action of cytotoxic ribonucleases (RNases), promising antitumor drugs, are described. Original experimental data and the results of analysis of recent publications have made it possible to identify the cellular components providing for the selective effects of exogenous RNases on tumor cells, on the one hand, and to estimate the contributions of individual molecular determinants to the enzyme cytotoxicity, on the other hand. The predominant effect of the electric charge of the RNase molecule on the induction of cell death has been demonstrated. The cytotoxic effects of RNases are determined by the catalytic cleavage of accessible RNA, the action of the products of its hydrolysis, and the noncatalytic electrostatic interaction of the exogenous enzyme with cell components. Potential RNase targets in a tumor cell and the role of modulation of calcium-dependent potassium channels and the ras oncogene in RNase-induced cell damage are considered. The effect of cytotoxic RNases on gene expression by affecting RNA interference is discussed.

Key words

ribonucleases cytotoxicity antitumor activity Ras KCa channels catalytic activity stability structure charge RNA interference 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deutscher M.P., Li Z. 2001. Exoribonucleases and their multiple roles in RNA metabolism. Prog. Nucleic Acid Res. Mol. Biol. 66, 67–105.Google Scholar
  2. 2.
    Harder J., Schroder J.M. 2002. RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J. Biol. Chem. 277, 46784–46799.Google Scholar
  3. 3.
    Rosenberg H.F., Domachowske J.B. 2001. Eosinophils, eosinophil ribonucleases, and their role in host defense against respiratory virus pathogens. J. Leukoc. Biol. 70, 691–698.Google Scholar
  4. 4.
    Leland P., Raines R. 2001. Cancer chemotherapy: Ribonucleases to the rescue. Chem. Biol. 8, 405–413.Google Scholar
  5. 5.
    Matousek J. 2001. Ribonucleases and their antitumor activity. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 129, 175–191.Google Scholar
  6. 6.
    Mikulski S.M., Costanzi J.J., Vogelzang N.J., McCachren S., Taub R.N., Chun H., Mittelman A., Panella T., Puccio C., Fine R., Shogen K. 2002. Phase II trial of a single weekly intravenous dose of rapirnase in patient with unresectable malignant mesothelioma. J. Clin. Oncol. 20, 274–281.Google Scholar
  7. 7.
    Ogawa Y., Iwama M., Ohgi K., Tsuji T., Irie M., Itagaki T., Kobajashi H., Inokushi N. 2002. Effect of replacing the aspartic acid/glutamic acid residues of bullfrog sialic acid binding lectin with asparagine/glutamine and arginine on the inhibition of cell proliferation in murine leukemia P388 cells. Biol. Pharm. Bull. 25, 722–727.Google Scholar
  8. 8.
    Antignani A., Naddo M., Cubellis M.V., Russo A., D’Alessio G. 2001. Antitumor action of seminal ribonuclease, its dimeric structure, and its resistance to the ribonuclease inhibitor. Biochemistry. 40, 3492–3496.Google Scholar
  9. 9.
    Newton D.L., Kaur G., Rhim J.S., Sausville E.A., Rybak S.M. 2001. RNA damage and inhibition of neoplastic endothelial cells growth: Effects of human and amphibian ribonucleases. Radiat. Res. 155, 171–174.Google Scholar
  10. 10.
    Maeda T., Mahara K., Kitazoe M., Futami J., Takidini A., Kosaka M., Tada H., Seno M., Yamada H. 2002. RNase 3 (ECP) is an extraordinarily stable protein among human pancreatic-type RNases. J. Biochem. (Tokyo). 132, 737–742.Google Scholar
  11. 11.
    Halicka D.H., Pozarowski P., Ita M., Ardelt W.J., Mikulski S.M., Shogen K., Darzynkiewicz Z. 2002. Enhancement of activation-induced apoptosis of lymphocytes by the cytotoxic ribonuclease (rapirnase). Int. J. Oncol. 21, 1245–1250.Google Scholar
  12. 12.
    Ilinskaya O., Decker K., Koschinski A., Dreyer F., Repp H. 2001. Bacillus intermedius ribonuclease as inhibitor of cell proliferation and membrane current. Toxicology. 156, 101–107.Google Scholar
  13. 13.
    Sevcik J., Urbanikova L., Leland P.A., Raines R.T. 2002. X-Ray structure of two crystalline forms of a streptomycete ribonuclease with cytotoxic activity. J. Biol. Chem. 277, 47325–47330.Google Scholar
  14. 14.
    Olmo N., Turnay J., Gonzalez de Butitrago G., Lopez de Silanes I., Gavilanes J.G., Lizarbe M.A. 2001. Cytotoxic mechanism of the ribotoxin alpha-sarcin. Induction of cell death via apoptosis. Eur. J. Biochem. 268, 1245–1250.Google Scholar
  15. 15.
    Cho S., Joshi J.G. 1989. Ribonuclease inhibitor from pig brain: Purification, characterization, and direct spectrophotometric assay. Anal. Biochem. 176, 175–179.Google Scholar
  16. 16.
    Abraham A.T., Lin J., Newton D.L., Rybak S., Hecht S. 2003. RNA cleavage and inhibition of protein synthesis by bleomycin. Chem. Biol. 10, 45–52.Google Scholar
  17. 17.
    Batey R.T., Doudna J.A. 2002. Structural and energetic analysis of metal ions essential to SRP signal recognition domain assembly. Biochemistry. 41, 11703–11710.Google Scholar
  18. 18.
    McManus M.T. 2003. MicroRNAs and cancer. Semin. Cancer Biol. 13, 253–258.Google Scholar
  19. 19.
    Couzin J. 2002. Small RNAs make big splash. Science. 298, 2296–2297.Google Scholar
  20. 20.
    Saxena S.K., Shogen K., Ardelt W. 2003. Onconase and its therapeutic potential. Lab. Med. 34, 380–387.Google Scholar
  21. 21.
    Saxena S.K., Sirdeshmukh R., Ardelt W., Mikulski S.M., Shogen K., Youle R.J. 2003. Entry into cells and selective degradation of tRNAs by a cytotoxic member of the RNase A family. J. Biol. Chem. 277, 15142–15146.Google Scholar
  22. 22.
    Ardelt B., Ardelt W., Darzynkiewicz Z. 2003. Cytotoxic ribonucleases and RNA interference (RNAi). Cell Cycle. 2, A10–F12.Google Scholar
  23. 23.
    Sorrentino S., Naddeo M., Russo A., D’Alessio G. 2003. Degradation of double-stranded RNA by human pancreatic ribonuclease: Crucial role of noncatalytic basic amino acid residues. Biochemistry. 42, 10182–19190.Google Scholar
  24. 24.
    Blaszczyk J., Gan J., Tropea J.E., Court D.L., Waugh D.S., Ji X. 2004. Noncatalytic assembly of ribonuclease III with double-stranded RNA. Structure (Cambridge). 12, 457–466.Google Scholar
  25. 25.
    Ran S., Downes A., Thorpe P.E. 2002. Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res. 62, 6132–6140.Google Scholar
  26. 26.
    Ran S., Thorpe P.E. 2002. Phosphatidylserine is a marker of tumor vasculature and potential target for cancer imaging and therapy. Int. J. Radiat. Oncol. Biol. Phys. 54, 1479–1484.Google Scholar
  27. 27.
    Haigis M.C., Raines R.T. 2002. Secretory ribonucleases are internalized by a dynamin-independent endocytic pathway. J. Cell Sci. 116, 313–324.Google Scholar
  28. 28.
    Bracale A., Spalletti-Cernia D., Mastronicola M., Castaldi F., Mannucci R., Nitsch L., D’Alessio G. 2002. Essential stations in the intracellular pathway of cytotoxic bovine seminal ribonuclease. Biochem. J. 362, 553–560.Google Scholar
  29. 29.
    Gho Y.S., Yoon W.H., Chae C.B. 2002. Antiplasmin activity of a peptide that binds to the receptor-binding site of angiogenin. J. Biol. Chem. 277, 9690–9694.Google Scholar
  30. 30.
    Kourie J.I., Henry C.L. 2002. Ion channel formation and membrane-linked pathologies of misfolded hydrophobic proteins: The role of dangerous unchaperoned molecules. Clin. Exp. Pharmacol. Physiol. 29, 741–753.Google Scholar
  31. 31.
    Egorov S.Yu., Dmitriev I.I., Naumova E.S., Kupriyanova-Ashina F.G. 1996. An immunochemical study of Bacillus intermedius ribonuclease entry into Candida tropicalis cells and effects of the enzyme on yeast growth. Tsitologiya. 38, 66–69.Google Scholar
  32. 32.
    Prior T.I., Kunwar S., Pastan I. 1996. Studies on the activity of barnase toxins in vitro and in vivo. Bioconjug. Chem. 7, 23–29.Google Scholar
  33. 33.
    Mizejewski G.T. 2002. Biological role of alpha-fetoprotein in cancer: Prospects for anticancer therapy. Expert Rev. Anticancer Ther. 2, 709–735.Google Scholar
  34. 34.
    Hursey M., Newton D.L., Hansen H.J., Ruby D., Goldenberg D.M., Rybak S.M. 2002. Specifically targeting the CD22 receptor of human B-cell lymphomas with RNA damaging agents: A new generation of therapeutics. Leuk. Lymphoma. 43, 953–959.Google Scholar
  35. 35.
    Huhn M., Sasse S., Tur M.K., Matthey B., Scinkothe T., Rybak S.M., Barth S., Engert A. 2001. Human angiogenin fused to human CD30 ligand (Ang-CD30L) exhibits specific cytotoxicity against CD30-positive lymphoma. Cancer Res. 61, 8737–8742.Google Scholar
  36. 36.
    Di Lorenzo C., Nigro A., Piccoli R., D’Alessio G. 2002. A new RNase-based immunoconjugate selectively cytotoxic for ErbB2-overexpressing cells. FEBS Lett. 516, 208–212.Google Scholar
  37. 37.
    Psarras K., Ueda M., Tanabe M., Kitajima M., Aiso S., Komatsu S., Seno M. 2000. Targeting activated lymphocytes with an antirelay human immunotoxin analogue: Human pancreatic RNase1—human IL-2 fusion. Cytokine. 12, 786–790.Google Scholar
  38. 38.
    Sills R.C., Boorman G.A., Neal J.E., Hong H.L., Devereux T.R. 1999. Mutations in ras genes in experimental tumor of rodents. IARC Sci. Publ. 146, 55–86.Google Scholar
  39. 39.
    Smith M.R., Newton D.L., Mikulski S.M., Rybak S.M. 1999. Cell cycle-related differences in susceptibility of NIH/3T3 cells to ribonucleases. Exp. Cell. Res. 247, 220–232.Google Scholar
  40. 40.
    Ilinskaya O.N., Dreyer F., Mitkevich V.A., Shaw K.L., Pace C.N., Makarov A.A. 2002. Changing the net charge from negative to positive makes ribonuclease Sa cytotoxic. Protein Sci. 11, 2522–2525.Google Scholar
  41. 41.
    Scharovsky O.G., Rozados V.R., Gervasoni S.I., Matar P. 2000. Inhibition of ras oncogene: A novel approach to antineoplastic therapy. J. Biochem. Sci. 7, 292–298.Google Scholar
  42. 42.
    Falconer M., Smith F., Sura-Narwal S., Congrave G., Liu Z., Hayter P., Ciaramella G., Keighley W., Haddock P., Waldron G., Sewing A. 2002. High-throughput screening for ion channel modulators. J. Biomol. Screen. 7, 460–465.Google Scholar
  43. 43.
    Chi X., Sutton E.T., Hellermenn G., Price J.M. 2000. Potassium channel openers prevent beta-amyloid toxicity in bovine vascular endothelial cells. Neurosci. Lett. 290, 9–12.Google Scholar
  44. 44.
    Ilinskaya O., Koschinski A., Mitkevich V., Repp H., Dreyer F., Pace N., Makarov A. 2004. Cytotoxicity of RNases is increased by cationization and counteracted by K Ca channels Biochem. Biophys. Res. Commun. 314, 550–554.Google Scholar
  45. 45.
    Schmittschmitt J.P., Scholtz M. 2003. The role of protein stability, solubility, and net charge in amyloid fibril formation. Protein Sci. 12, 2374–2378.Google Scholar
  46. 46.
    Repp H., Koshinski A., Decker K., Dreyer F. 1998. Activation of a Ca2+-dependent K+ current in mouse fibroblasts by lysophosphatidic acid requires a pertussis toxin-sensitive G protein and Ras. Naunyn-Schmiedeberg’s Arch. Pharmacol. 358, 509–517.Google Scholar
  47. 47.
    Decker K., Koshinski A., Trouliaris S., Tamura T., Dreyer F., Repp H. 1998. Activation of a Ca2+-dependent K+ current by the oncogenic receptor protein tyrosine kinase v-Fms in mouse fibroblasts. Naunyn-Schmiede-berg’s Arch. Pharmacol. 357, 378–384.Google Scholar
  48. 48.
    Ilinskaya O.N., Kolpakov A.I. Cell targets for the antitumor action of microbial endonucleases. Naukoemk. Tekhnol. 4, 61–67.Google Scholar
  49. 49.
    Jensen B., Hertz M., Christophersen P., Madsen L. 2002. The Ca2+-activated K+ channel of intermediate conductance: A possible target for immune suppression. Expert. Opin. Ther. Targets. 6, 623–636.Google Scholar
  50. 50.
    Ilinskaya O.N., Ivanchenko O.B., Karamova N.S., Kipenskaya L.V. 1996. SOS-inducing ability of native and mutant microbial ribonucleases. Mut. Res. 354, 203–209.Google Scholar
  51. 51.
    Ilinskaya O.N., Ivanchenko O.B., Karamova N.S. 1995. Bacterial ribonuclease: Mutagenic effect in microbial test-systems. Mutagenesis. 10, 165–170.Google Scholar
  52. 52.
    Ilinskaya O.N., Vamvakas S. 1997. Nephrotoxic effects of bacterial ribonucleases in the isolated perfused rat kidney. Toxicology. 120, 55–63.Google Scholar
  53. 53.
    Ilinskaya O.N., Frai H. 2000. Genotoxic effects of ribonuclease in vivo. Biopolim. Kletka. 4, 270–274.Google Scholar
  54. 54.
    Iordanov M.S., Ryabinina O.P., Wong J., Newton D.L., Rybak S.M., Magun B.E. 2000. Molecular determinants of apoptosis induced by the cytotoxic ribonuclease onconase: Evidence for cytotoxic mechanisms different from inhibition of protein synthesis. Cancer Res. 60, 1983–1994.Google Scholar
  55. 55.
    Futami J., Maeda T., Kitazoe M., Nukui E,. Tada H., Seno M., Kosaka M., Yamada H. 2001. Preparation of potent cytotoxic ribonucleases by cationization: Enhanced cellular uptake and decreased interaction with ribonuclease inhibitor by chemical modification of carboxyl groups. Biochemistry. 40, 7518–7524.Google Scholar
  56. 56.
    Rosenberg H.F. 1995. Recombinant human eosinophil cationic protein. Ribonuclease activity is not essential for cytotoxicity. J. Biol. Chem. 270, 7876–7881.Google Scholar
  57. 57.
    Kurinenko B.M., Bulgakova R.Sh., Davydov R.E. 1998. Effect of ribonuclease from Bacillus intermedius on human blood lymphocytes. FEMS Immunol. Med. Microbiol. 21, 117–122.Google Scholar
  58. 58.
    Klink T.A., Raines R.T. 2000. Conformational stability is a determinant of ribonuclease A cytotoxicity. J. Biol. Chem. 275, 17463–17467.Google Scholar
  59. 59.
    Leland P.A., Staniszewski K.E., Kim B.M., Raines R. 2000. A synamorphic disulfide bond is critical for the conformational stability and cytotoxicity of an amphibian ribonuclease. FEBS Lett. 477, 203–207.Google Scholar
  60. 60.
    Notomista E., Catanzano F., Graziano G., Di Gaetano S., Barone G., Di Donato A. 2001. Contribution of chain termini to the conformational stability and biological activity of onconase. Biochemistry. 40, 9097–9103.Google Scholar
  61. 61.
    Matousek J., Pouckova P., Hlouskova D., Zadvinova M., Soucek J., Skvor J. 2004. Effect of hyaluronidase and PEG chain conjugation on the biologic and antitumor activity of RNase A. J. Contr. Release. 94, 401–410.Google Scholar
  62. 62.
    Kim B.M., Kim H., Raines R., Lee Y. 2004. Glycosylation of onconase increases its conformational stability and toxicity for cancer cells. Biochem. Biophys. Res. Commun. 315, 976–983.Google Scholar
  63. 63.
    Piccoli R., Di Gaetano S., De Lorenzo C., Grauso M., Monaco C., Spalletti-Cernia D., Laccetti P., Cinatl J., Matousek J., D’Alessio G. 1999. A dimeric mutant of human pancreatic ribonuclease with selective cytotoxicity toward malignant cells. Proc. Natl. Acad. Sci. USA. 96, 7768–7773.Google Scholar
  64. 64.
    Spalletti-Cernia D., Sorrentino R., Di Gaetano S., Piccoli R., Santoro V., D’Alessio G., Laccetti P., Vacchio G. 2004. Highly selective toxic and proapoptotic effects of two dimeric ribonucleases on thyroid cancer cells compared to the effects of doxorubicin. Br. J. Cancer. Res. 90, 270–277.Google Scholar
  65. 65.
    Matousek J., Gotte G., Pouckova P., Soucek J., Slavik T., Vottariello F., Libonati M. 2003. Antitumor activity and other biological actions of oligomers of ribonuclease A. J. Biol. Chem. 278, 23817–23822.Google Scholar
  66. 66.
    Futami J., Nukui E., Maeda T., Kosaka M., Tada H., Sano M., Yamada H. 2002. Optimum modification for the highest cytotoxicity of cationized ribonuclease. J. Biochem. (Tokyo). 132, 223–228.Google Scholar
  67. 67.
    Makarov A.A., Ilinskaya O.N. 2003. Cytotoxic ribonucleases: Molecular weapons and their targets. FEBS Lett. 540, 15–20.CrossRefGoogle Scholar
  68. 68.
    Bosch M., Benito A., Ribo M., Puig T., Beaumelle B., Vilanova M. 2004. A nuclear localization sequence endows human pancreatic ribonuclease with cytotoxic activity. Biochemistry. 43, 2167–2177.Google Scholar
  69. 69.
    Iwama M., Ogawa Y., Sasaki N., Nitta K., Takajanagi Y., Ohgi K., Tsuji T., Irie M. 2001. Effect of modification of the carboxyl groups of sialic acid binding lectin from bullfrog (Rana catesbiana) oocyte on anti-tumor activity. Biol. Pharm. Bull. 24, 978–981.Google Scholar
  70. 70.
    Xu H., He W.J., Liu W.Y. 2004. A novel ribotoxin with ribonuclease activity that specifically cleaves a single phosphodiester bond in rat 28S ribosomal RNA and inactivates ribosome. Arch. Biochem. Biophys. 427, 30–40.Google Scholar
  71. 71.
    Xia H.C., Li F., Zhang Z.C. 2003. Purification and characterization of Moschatin, a novel type I ribosome-inactivated protein from the mature seeds of pumpkin (Cucurbita moschata), and preparation of its immunotoxin against human melanoma cells. Cell Res. 13, 369–374.Google Scholar
  72. 72.
    Masaki H., Ogawa T. 2002. The modes of action of colicins E5 and D, and related cytotoxic tRNases. Biochimie. 84, 433–438.Google Scholar
  73. 73.
    Gaur D., Seth D., Batra J.K. 2002. Glycine 38 is crucial for the ribonucleolytic activity of human pancreatic ribonuclease on double-stranded RNA. Biochem. Biophys. Res. Commun. 297, 390–395.Google Scholar
  74. 74.
    Juan G., Ardelt B., Li X., Mikulski S.M., Shogen K., Ardelt W., Mittelman A., Darzynkiewicz Z. 1998. G1 arrest of U-937 cells by onconase is associated with suppression of cyclin D3 expression, induction of p16INK4A, p21WAF1/CIP1 and p27KIP and decreased pRb phosphorylation. Leukemia. 12, 1241–1248.Google Scholar
  75. 75.
    Vlasov V.V. 2004. Oligonucleotides as a basis for gene-directed therapeutics. Vestn. Ross. Akad. Nauk. 74, 419–423.Google Scholar
  76. 76.
    Kuwabara T., Hsieh J., Nakashima K., Taira K., Gage F.H. 2004. A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell. 116, 779–793.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • O. N. Ilinskaya
    • 1
  • A. A. Makarov
    • 2
  1. 1.Kazan State UniversityKazanTatarstan, Russia
  2. 2.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations