Mathematical Notes

, Volume 80, Issue 3–4, pp 542–549 | Cite as

Finite groups with a seminormal Hall subgroup

  • V. S. Monakhov


Tests for π-solvability of a finite group with seminormal Hall π-subgroup are established and the nilpotency of the third commutator subgroup of any group with seminormal noncyclic Sylow subgroups is proved.

Key words

finite group Hall subgroup seminormal subgroup solvable group supersolvable group nilpotent group Sylow subgroup 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Kegel, “Produkte nilpotenter Gruppen,” Arch. Math., 12 (1961), 90–93.MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    R. M. Guralnick, “Subgroups of prime power index in a simple group,” J. Algebra, 81 (1983), no. 2, 304–311.MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    V. V. Podgornaya, “Seminormal subgroups and super-solvability of finite groups,” Vestsī Nats. Akad. Navuk Belarusī Ser. Fīz.-Mat. Navuk (2000), no. 4, 22–25.Google Scholar
  4. 4.
    Su Xiongying, “On semi-normal subgroups of finite group,” J. Math. (Wuhan), 8(1) (1988), 7–9.Google Scholar
  5. 5.
    B. Huppert, Endliche Grupperi, vol. I, Springer-Verlag, Berlin-Heidelberg-New York, 1967.Google Scholar
  6. 6.
    J. C. Lennox and S. E. Stonehewer, Subnormal Subgroups of Groups, Clarendon Press, Oxford, 1987.MATHGoogle Scholar
  7. 7.
    B. Huppert and N. Blackburn, Finite Groups, vol. II, Springer-Verlag, Berlin-Heidelberg-New York, 1982.Google Scholar
  8. 8.
    L. A. Semetkov, Formations of Finite Groups, Nauka, Moscow, 1978.Google Scholar
  9. 9.
    V. S. Monakhov, “Product of a solvable and a cyclic group,” in: Sixth All-Union Symposium on Group Theory (Cerkassy, 1978) (in Russian), Collection, Naukova Dumka, Kiev, 1980, pp. 188–195.Google Scholar
  10. 10.
    S. A. Syskin, “A problem of R. Baer.,” Sibirsk. Mat. Zh. [Siberian Math. J.], 20 (1979), no. 3, 679–681.MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. S. Monakhov
    • 1
  1. 1.F. Skorina Gomel UniversityBelarus

Personalised recommendations