Mathematical Notes

, Volume 80, Issue 3–4, pp 403–409 | Cite as

Nikol’skii-Stechkin inequality for trigonometric polynomials in L 0

  • É. A. Storozhenko


In this paper, the Nikol’skii-Stechkin inequality for the trigonometric polynomials is generalized to the space L 0. The resulting estimates are final.

Key words

Nikol’skii-Stechkin inequality trigonometric polynomial algebraic polynomial Euler’s gamma function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. B. Stechkin, “Generalization of some inequalities due to S. N. Bernstein,” Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.], 60 (1948), no. 9, 1511–1514.MATHGoogle Scholar
  2. 2.
    S. M. Nikol’skii, “Generalization of an inequality due to S. N. Bernstein,” Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.], 60 (1948), no. 9, 1507–1510.Google Scholar
  3. 3.
    É. A. Storozhenko, V. G. Krotov, and P. Oswald, “Direct and inverse theorems of Jackson type in the spaces L p, 0 < p < 1,” Mat. Sb. [Math. USSR-Sb.], 98(140) (1975), 395–415.MATHMathSciNetGoogle Scholar
  4. 4.
    V. I. Ivanov, “Direct and inverse theorems in in approximation theory in the metric of L p for 0 < p < 1,” Mat. Zametki [Math. Notes], 18 (1975), no. 5, 641–658.MATHMathSciNetGoogle Scholar
  5. 5.
    P. Oswald, “Inequalities for trigonometric polynomials in the metric of L p, 0 < p < 1,” Izv. Vyssh. Uchebn. Zaved. Mat. [Soviet Math. (Iz. VUZ)], (1976), no. 7, 65–75.Google Scholar
  6. 6.
    É. A. Storozhenko, Approximation of Functions and Embedding Theorems in the Spaces H p and L p [in Russian], Doctorate thesis in the physico-mathematical sciences, Odessa State University, Odessa, 1978.Google Scholar
  7. 7.
    V. V. Arestov, “On integral inequalities for trigonometric polynomials and their derivatives,” Izv. Akad. Nauk SSSR Ser. Mat. [Math. USSR-Izv.], 45 (1981), no. 1, 3–22.MATHMathSciNetGoogle Scholar
  8. 8.
    V. V. Arestov, “Integral inequalities for algebraic polynomials on the unit circle,” Mat. Zametki [Math. Notes], 48 (1990), no. 4, 7–18.MATHMathSciNetGoogle Scholar
  9. 9.
    I. M. Ryzhik and I. S. Gradshtein, Tables of Integrals, Sums, Series, and Products [in Russian], GITTL, Moscow-Leningrad, 1951.Google Scholar
  10. 10.
    É. A. Storozhenko, “On a problem of Mahler on the zeros of a polynomial and its derivative,” Mat. Sb. [Russian Acad. Sci. Sb. Math.], 187 (1996), no. 5, 111–121.MATHMathSciNetGoogle Scholar
  11. 11.
    É. A. Storozhenko, “Difference inequalities for polynomials in L 0,” Mat. Studii, 22 (2004), no. 1, 27–34.MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • É. A. Storozhenko
    • 1
  1. 1.I. I. Mechnikov Odessa National UniversityUkraine

Personalised recommendations