Mathematical Notes

, Volume 80, Issue 1–2, pp 83–90 | Cite as

On the existence of a variational principle for an operator equation with second derivative with respect to “ time”

  • V. M. Savchin
  • S. A. Budochkina


Using methods of nonlinear functional analysis, we define the structure of an evolution operator equation of second order that can be formulated in direct variational terms.

Key words

operator equation with time second derivative variational principle Gâteaux derivative operator potential Volterra equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. M. Savchin, Mathematical Methods of the Mechanics of Infinite-Dimensional Nonpotential Systems [in Russian], Izdat. UDN, Moscow, 1991.Google Scholar
  2. 2.
    M. M. Vainberg, The Variational Method and the Method of Monotone Operators [in Russian], Nauka, Moscow, 1972.Google Scholar
  3. 3.
    V. M. Filippov, V. M. Savchin, and S. G. Shorokhov, “Variational principles for nonpotential operators,” in: Current Problems in Mathematics: Fundamental Directions [in Russian] vol. 40, Itogi Nauki i Tekhniki, VINITI, Moscow, 1992.Google Scholar
  4. 4.
    V. Volterra, Leçons sur les fonctions de lignes, Gautier-Villars, Paris, 1913.MATHGoogle Scholar
  5. 5.
    O. A. Ladyzhenskaya, Mathematical Questions of the Dynamics of a Viscous Incompressible Liquid, Nauka, Moscow, 1970.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. M. Savchin
    • 1
  • S. A. Budochkina
    • 1
  1. 1.Peoples’ Friendship University of RussiaRussia

Personalised recommendations