Skip to main content
Log in

Modified Dyadic Integral and Fractional Derivative on ℝ+

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

For functions from the Lebesgue space L(ℝ+), we introduce the modified strong dyadic integral J α and the fractional derivative D (α) of order α > 0. We establish criteria for their existence for a given function fL(ℝ+). We find a countable set of eigenfunctions of the operators D (α) and J α, α > 0. We also prove the relations D (α)(J α(f)) = f and J α(D (α)(f)) = f under the condition that \(\smallint _{\mathbb{R}_ + } f(x)dx = 0\). We show the unboundedness of the linear operator \(J_\alpha :L_{J_{_\alpha } } \to L(\mathbb{R}_ + )\), where L J α is its natural domain of definition. A similar assertion is proved for the operator \(D^{(\alpha )} :L_{D^{(\alpha )} } \to L(\mathbb{R}_ + )\). Moreover, for a function fL(ℝ+) and a given point x ∈ ℝ+, we introduce the modified dyadic derivative d (α)(f)(x) and the modified dyadic integral j α(f)(x). We prove the relations d (α)(J α(f))(x) = f(x) and j α(D (α)(f)) = f(x) at each dyadic Lebesgue point of the function f.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives and Several Their Applications [in Russian], Nauka i Tekhnika, Minsk, 1987.

    Google Scholar 

  2. A. Zygmund, Trigonometric Series, vol. 1, Cambridge, 1959; Russian translation: Mir, Moscow, 1965.

  3. I. N. Sneddon, The Use of Operators of Fractional Integration in Applied Mathematics, Appl. Mech. Ser., PWN, Warszawa-Poznan, 1979.

    Google Scholar 

  4. M. M. Dzhrbashyan, Integral Transforms and Function Representations in a Complex Domain [in Russian], Nauka, Moscow, 1966.

    Google Scholar 

  5. P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation. One-Dimensional Theory, vol. 1, Bikhauser-Verlag, Basel-Stuttgart, 1971.

    Google Scholar 

  6. P. L. Butzer and W. Trebels, Hilbert-transformation, gebrochene Integration und Differentiation, Westdeutschen-Verlag, Koln-Opladen, 1968.

    Google Scholar 

  7. H. T. Davis, The Theory of Linear Operators, Principia Press, Bloomington, 1936.

    Google Scholar 

  8. J. E. Gibbs, Walsh Spectrometry, a Form of Spectral Analysis Well-Suited to Binary Digital Computation, Nat. Phys. Lab., UK, Teddington, 1967.

    Google Scholar 

  9. N. J. Fine, “The generalized Walsh functions,” Trans. Amer. Math. Soc., 69 (1950), 66–77.

    MATH  MathSciNet  Google Scholar 

  10. R. S. Stankovic and J. E. Gibbs, “Bibliography of Gibbs derivatives,” in: Theory and Applications of Gibbs Derivatives, Proc. First Intern. Workshop on Gibbs Derivatives (Kupari-Dubrovnik, September 26–28, 1989), Math. Institute, Beograd, 1989, pp. XIV–XXIV.

    Google Scholar 

  11. F. Schipp, W. R. Wade, and P. Simon, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Akademiai Kiado, Budapest, 1990.

    Google Scholar 

  12. B. I. Golubov, A. V. Efimov, and V. A. Skvortsov, Series and Walsh Transforms. Theory and Applications [in Russian], Nauka, Moscow, 1987.

    Google Scholar 

  13. P. L. Butzer and H. J. Wagner, “Walsh series and the concept of a derivative,” Appl. Anal., 3 (1973), no. 1, 29–46.

    MathSciNet  Google Scholar 

  14. P. L. Butzer and H. J. Wagner, “A calculus for Walsh functions defined on ℝ+,” in: Proc. Symp. Naval Res. Laboratory (April 18–20, 1973), Washington, DC, pp. 75–81.

  15. J. Pal, “On the connection between the concept of a derivative defined on the dyadic field and the Walsh-Fourier transform,” Ann. Sci. Univ. Budapest. Sect. Math., 18 (1975), 49–54.

    MathSciNet  Google Scholar 

  16. J. H. Wagner, “On dyadic calculus for functions defined on ℝ+,” in: Theory and Applications of Walsh Functions, Proc. Symp, Hatfield Polytechnic, 1975, pp. 101–129.

  17. C. W. Onneweer, “Differentiation on p-adic or p-series field,” in: Linear Spaces and Approximation, Intern. Ser. Numer. Math., vol. 40, Birkhauser, Basel, 1978, pp. 187–198.

    Google Scholar 

  18. C. W. Onneweer, “On the definition of dyadic differentiation,” Appl. Anal., 9 (1979), 267–278.

    MATH  MathSciNet  Google Scholar 

  19. C. W. Onneweer, “Fractional differentiation on the group of integers of a p-adic or p-series field,” Anal. Math., 3 (1977), 119–130.

    Article  MATH  MathSciNet  Google Scholar 

  20. He. Zelin, “The derivative and integrals of fractional order in Walsh-Fourier analysis with applications to approximation theory,” J. Approximation Theory, 39 (1983), 361–373.

    Article  MATH  MathSciNet  Google Scholar 

  21. C. W. Onneweer, “Fractional derivatives and Lipschitz spaces on local fields,” Trans. Amer. Math. Soc., 258 (1980), 923–931.

    MathSciNet  Google Scholar 

  22. B. I. Golubov, “On the modified strong dyadic integral and derivative,” Mat. Sb. [Russian Acad. Sci. Sb. Math.], 193 (2002), no. 4, 37–60.

    MATH  MathSciNet  Google Scholar 

  23. B. I. Golubov, “On an analog of the Hardy inequality for the Fourier-Walsh transform,” Izv. Ross. Akad. Nauk Ser. Mat. [Russian Acad. Sci. Izv. Math.], 65 (2001), no. 3, 3–14.

    MATH  MathSciNet  Google Scholar 

  24. B. I. Golubov, “On the boundedness of the dyadic Hardy and Hardy-Littlewood operators in the dyadic spaces H and BMO,” Anal. Math., 26 (2000), 287–298.

    Article  MATH  MathSciNet  Google Scholar 

  25. B. I. Golubov, “The dyadic analog of the Tauberian Wiener theorem and related problems,” Izv. Ross. Akad. Nauk Ser. Mat. [Russian Acad. Sci. Izv. Math.], 67 (2003), no. 1, 33–58.

    MATH  MathSciNet  Google Scholar 

  26. J. Pal and F. Schipp, “On the dyadic differentiability of dyadic integral functions on ℝ+,” Ann. Univ. Sci. Budapest. Sect. Computatorica, 8 (1987), 91–108.

    MathSciNet  Google Scholar 

  27. P. L. Butzer and H. J. Wagner, “On dyadic analysis based on pointwise dyadic derivative,” Anal. Math., 1 (1975), 171–196.

    Article  MathSciNet  Google Scholar 

  28. I. P. Natanson, Theory of Functions of a Real Variable [in Russian], Nauka, Moscow, 1974.

    Google Scholar 

  29. F. Schipp, “Uber einen Ableitungsbegriff von P. L. Butzer und H. J. Wagner,” Math. Balkanica, 4 (1974), 541–546.

    MATH  MathSciNet  Google Scholar 

  30. J. H. Wagner, Ein Differential-und Integralkalkul in der Walsh-Fourier Analysis mit Anwendungen, Westdeutscher-Verlag, Koln-Opladen, 1974.

    Google Scholar 

  31. J. Pal and F. Schipp, “On the a.e. dyadic differentiability of dyadic integral on ℝ+,” in: Theory and Applications of Gibbs Derivatives, Proc. First Intern. Workshop on Gibbs Derivatives (Kupari-Dubrovnik, September 26–28, 1989), Math. Institute, Beograd, 1989, pp. 103–113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Matematicheskie Zametki, vol. 79, no. 2, 2006, pp. 213–233.

Original Russian Text Copyright © 2006 by B. I. Golubov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golubov, B.I. Modified Dyadic Integral and Fractional Derivative on ℝ+ . Math Notes 79, 196–214 (2006). https://doi.org/10.1007/s11006-006-0023-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11006-006-0023-9

Key words

Navigation