Mathematical Notes

, Volume 79, Issue 1–2, pp 196–214 | Cite as

Modified Dyadic Integral and Fractional Derivative on ℝ+

  • B. I. Golubov


For functions from the Lebesgue space L(ℝ+), we introduce the modified strong dyadic integral Jα and the fractional derivative D(α) of order α > 0. We establish criteria for their existence for a given function fL(ℝ+). We find a countable set of eigenfunctions of the operators D(α) and Jα, α > 0. We also prove the relations D(α)(Jα(f)) = f and Jα(D(α)(f)) = f under the condition that \(\smallint _{\mathbb{R}_ + } f(x)dx = 0\). We show the unboundedness of the linear operator \(J_\alpha :L_{J_{_\alpha } } \to L(\mathbb{R}_ + )\), where L J α is its natural domain of definition. A similar assertion is proved for the operator \(D^{(\alpha )} :L_{D^{(\alpha )} } \to L(\mathbb{R}_ + )\). Moreover, for a function fL(ℝ+) and a given point x ∈ ℝ+, we introduce the modified dyadic derivative d(α)(f)(x) and the modified dyadic integral jα(f)(x). We prove the relations d(α)(Jα(f))(x) = f(x) and jα(D(α)(f)) = f(x) at each dyadic Lebesgue point of the function f.

Key words

fractional derivative and integral strong dyadic integral and derivative dyadic Lebesgue point Fourier-Walsh transform generalized Walsh functions dyadic group 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives and Several Their Applications [in Russian], Nauka i Tekhnika, Minsk, 1987.Google Scholar
  2. 2.
    A. Zygmund, Trigonometric Series, vol. 1, Cambridge, 1959; Russian translation: Mir, Moscow, 1965.Google Scholar
  3. 3.
    I. N. Sneddon, The Use of Operators of Fractional Integration in Applied Mathematics, Appl. Mech. Ser., PWN, Warszawa-Poznan, 1979.Google Scholar
  4. 4.
    M. M. Dzhrbashyan, Integral Transforms and Function Representations in a Complex Domain [in Russian], Nauka, Moscow, 1966.Google Scholar
  5. 5.
    P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation. One-Dimensional Theory, vol. 1, Bikhauser-Verlag, Basel-Stuttgart, 1971.Google Scholar
  6. 6.
    P. L. Butzer and W. Trebels, Hilbert-transformation, gebrochene Integration und Differentiation, Westdeutschen-Verlag, Koln-Opladen, 1968.Google Scholar
  7. 7.
    H. T. Davis, The Theory of Linear Operators, Principia Press, Bloomington, 1936.Google Scholar
  8. 8.
    J. E. Gibbs, Walsh Spectrometry, a Form of Spectral Analysis Well-Suited to Binary Digital Computation, Nat. Phys. Lab., UK, Teddington, 1967.Google Scholar
  9. 9.
    N. J. Fine, “The generalized Walsh functions,” Trans. Amer. Math. Soc., 69 (1950), 66–77.MATHMathSciNetGoogle Scholar
  10. 10.
    R. S. Stankovic and J. E. Gibbs, “Bibliography of Gibbs derivatives,” in: Theory and Applications of Gibbs Derivatives, Proc. First Intern. Workshop on Gibbs Derivatives (Kupari-Dubrovnik, September 26–28, 1989), Math. Institute, Beograd, 1989, pp. XIV–XXIV.Google Scholar
  11. 11.
    F. Schipp, W. R. Wade, and P. Simon, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Akademiai Kiado, Budapest, 1990.Google Scholar
  12. 12.
    B. I. Golubov, A. V. Efimov, and V. A. Skvortsov, Series and Walsh Transforms. Theory and Applications [in Russian], Nauka, Moscow, 1987.Google Scholar
  13. 13.
    P. L. Butzer and H. J. Wagner, “Walsh series and the concept of a derivative,” Appl. Anal., 3 (1973), no. 1, 29–46.MathSciNetGoogle Scholar
  14. 14.
    P. L. Butzer and H. J. Wagner, “A calculus for Walsh functions defined on ℝ+,” in: Proc. Symp. Naval Res. Laboratory (April 18–20, 1973), Washington, DC, pp. 75–81.Google Scholar
  15. 15.
    J. Pal, “On the connection between the concept of a derivative defined on the dyadic field and the Walsh-Fourier transform,” Ann. Sci. Univ. Budapest. Sect. Math., 18 (1975), 49–54.MathSciNetGoogle Scholar
  16. 16.
    J. H. Wagner, “On dyadic calculus for functions defined on ℝ+,” in: Theory and Applications of Walsh Functions, Proc. Symp, Hatfield Polytechnic, 1975, pp. 101–129.Google Scholar
  17. 17.
    C. W. Onneweer, “Differentiation on p-adic or p-series field,” in: Linear Spaces and Approximation, Intern. Ser. Numer. Math., vol. 40, Birkhauser, Basel, 1978, pp. 187–198.Google Scholar
  18. 18.
    C. W. Onneweer, “On the definition of dyadic differentiation,” Appl. Anal., 9 (1979), 267–278.MATHMathSciNetGoogle Scholar
  19. 19.
    C. W. Onneweer, “Fractional differentiation on the group of integers of a p-adic or p-series field,” Anal. Math., 3 (1977), 119–130.CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    He. Zelin, “The derivative and integrals of fractional order in Walsh-Fourier analysis with applications to approximation theory,” J. Approximation Theory, 39 (1983), 361–373.CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    C. W. Onneweer, “Fractional derivatives and Lipschitz spaces on local fields,” Trans. Amer. Math. Soc., 258 (1980), 923–931.MathSciNetGoogle Scholar
  22. 22.
    B. I. Golubov, “On the modified strong dyadic integral and derivative,” Mat. Sb. [Russian Acad. Sci. Sb. Math.], 193 (2002), no. 4, 37–60.MATHMathSciNetGoogle Scholar
  23. 23.
    B. I. Golubov, “On an analog of the Hardy inequality for the Fourier-Walsh transform,” Izv. Ross. Akad. Nauk Ser. Mat. [Russian Acad. Sci. Izv. Math.], 65 (2001), no. 3, 3–14.MATHMathSciNetGoogle Scholar
  24. 24.
    B. I. Golubov, “On the boundedness of the dyadic Hardy and Hardy-Littlewood operators in the dyadic spaces H and BMO,” Anal. Math., 26 (2000), 287–298.CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    B. I. Golubov, “The dyadic analog of the Tauberian Wiener theorem and related problems,” Izv. Ross. Akad. Nauk Ser. Mat. [Russian Acad. Sci. Izv. Math.], 67 (2003), no. 1, 33–58.MATHMathSciNetGoogle Scholar
  26. 26.
    J. Pal and F. Schipp, “On the dyadic differentiability of dyadic integral functions on ℝ+,” Ann. Univ. Sci. Budapest. Sect. Computatorica, 8 (1987), 91–108.MathSciNetGoogle Scholar
  27. 27.
    P. L. Butzer and H. J. Wagner, “On dyadic analysis based on pointwise dyadic derivative,” Anal. Math., 1 (1975), 171–196.CrossRefMathSciNetGoogle Scholar
  28. 28.
    I. P. Natanson, Theory of Functions of a Real Variable [in Russian], Nauka, Moscow, 1974.Google Scholar
  29. 29.
    F. Schipp, “Uber einen Ableitungsbegriff von P. L. Butzer und H. J. Wagner,” Math. Balkanica, 4 (1974), 541–546.MATHMathSciNetGoogle Scholar
  30. 30.
    J. H. Wagner, Ein Differential-und Integralkalkul in der Walsh-Fourier Analysis mit Anwendungen, Westdeutscher-Verlag, Koln-Opladen, 1974.Google Scholar
  31. 31.
    J. Pal and F. Schipp, “On the a.e. dyadic differentiability of dyadic integral on ℝ+,” in: Theory and Applications of Gibbs Derivatives, Proc. First Intern. Workshop on Gibbs Derivatives (Kupari-Dubrovnik, September 26–28, 1989), Math. Institute, Beograd, 1989, pp. 103–113.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • B. I. Golubov
    • 1
  1. 1.Moscow Institute of Engineering Physics (State University)MoscowRussia

Personalised recommendations