Mathematical Notes

, Volume 78, Issue 5–6, pp 649–661 | Cite as

On G-Compactifications

  • K. L. Kozlov
  • V. A. Chatyrko


The semilattice of G-compactifications of a G-Tikhonov space X is studied. The question of what sets containing X and contained in the maximal G-compactification β G X must be contained also in all other G-compactifications of X is considered. Conditions for β G X to be the completion of the G-space X with respect to a natural uniformity (proximity) on X are obtained. Sufficient conditions for the existence of a smallest (minimal, unique) G-compactification of X are given.

Key words

G-compactification smallest G-compactification minimal G-compactification unique G-compactification equivariant map uniformity proximity Tikhonov space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. G. Megrelishvili, “A Tikhonov G-space having no G-compactifications and G-linearizations,” Uspekhi Mat. Nauk [Russian Math. Surveys], 43 (1988), no. 2, 145–146.MATHMathSciNetGoogle Scholar
  2. 2.
    S. A. Antonyan and Yu. M. Smirnov, “Universal objects and compactifications for topological transformation groups,” Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.], 257 (1981), no. 3, 521–525.MathSciNetGoogle Scholar
  3. 3.
    M. G. Megrelishvili, “Equivariant completions and compactifications,” Soobshch. Akad. Nauk Gruzin. SSR, 115 (1984), no. 1, 21–24.MATHMathSciNetGoogle Scholar
  4. 4.
    J. de Vries, “Equivariant embeddings of G-spaces,” in: General Topology and its Relations to Modern Analysis and Algebra IV. pt. B, Prague, 1977, pp. 485–493.Google Scholar
  5. 5.
    J. M. Smirnov and L. N. Stoyanov, “On minimal equivariant compact extensions,” Comptes rendus de l'Academie bulgare des Sciences, 36 (1983), no. 6, 733–736.MathSciNetGoogle Scholar
  6. 6.
    R. Palais, “The classification of G-spaces,” Memoir. Amer. Math. Soc., 36 (1960), no. 2, 1–72.Google Scholar
  7. 7.
    J. de Vries, Topological transformation groups I, Mathematical Centre Tracts, no. 65, Mathematisch Centrum, Amsterdam, 1975.Google Scholar
  8. 8.
    J. de Vries, “On the existence of G-compactifications,” Bull. Acad. Polon. Sci. Ser. Math., 26 (1978), no. 3, 275–280.MATHGoogle Scholar
  9. 9.
    R. Engelking, General Topology, PWN, Warsaw, 1977; Russian translation: Mir, Moscow, 1986.Google Scholar
  10. 10.
    G. Birkhoff, Lattice Theory, 3rd ed., Amer. Math. Soc., Providence, R. I., 1967; Russian translation: Nauka, Moscow, 1983.Google Scholar
  11. 11.
    N. Bourbaki, Elements de mathematique, Fasc. II, Livre III: Topologie generale, Chapitre 1: Structures topologiques, Chapitre 2: Structures uniformes, Hermann, Paris, 1965; Russian translation: Nauka, Moscow, 1968.Google Scholar
  12. 12.
    N. Bourbaki, Elements de mathematique, Fasc. II, Livre III: Topologie generale, Chapitre 3: Groupes topologiques, Hermann, Paris, 1965; Russian translation: Nauka, Moscow, 1969.Google Scholar
  13. 13.
    M. G. Megrelishvili, “On equivariant normality,” Soobshch. Akad. Nauk Gruzin. SSR, 111 (1983), no. 1, 17–19.MATHMathSciNetGoogle Scholar
  14. 14.
    J. de Vries, “On the G-compactification of products,” Pacific J. Math., 110 (1983), no. 1, 447–470.Google Scholar
  15. 15.
    M. Megrelishvili, “Equivariant completions,” Comment. Math. Univ. Carolinae, 35 (1994), no. 3, 539–547.MATHMathSciNetGoogle Scholar
  16. 16.
    J. de Vries, “Universal topological transformation groups,” Gen. Topology and Appl., 5 (1975), no. 2, 107–122.MATHGoogle Scholar
  17. 17.
    J. de Vries, “G-spaces: Compactifications and pseudocompactness,” in: Proceedings of the Colloquim on Topology, Eger, 1983, 655–666.Google Scholar
  18. 18.
    V. A. Chatyrko and K. L. Kozlov, “The maximal G-compactifications of G-spaces with special actions,” in: Proceedings of the 9th Prague Topological Symposium (Prague, 2001), Topol. Atlas, North Bay, ON, 2002, pp. 15–21.Google Scholar
  19. 19.
    A. Weil, Sur les espaces a structure uniforme et sur la topologie generale, Actualities Sci. Industr., vol. 551, Paris, 1938.Google Scholar
  20. 20.
    R. Arens, “Topologies for homeomorphism groups,” Amer. J. Math., 68 (1946), no. 4, 593–610.MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • K. L. Kozlov
    • 1
  • V. A. Chatyrko
    • 2
  1. 1.M. V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Linkoping UniversitySweden

Personalised recommendations