Advertisement

Mathematical Notes

, Volume 78, Issue 1–2, pp 258–263 | Cite as

Concerning an Example of Paskiewich

  • A. P. Solodov
Article

Abstract

We generalize the construction proposed by A. Paskiewich of an example of an orthonormal system which establishes the sharpness of the Men’shov-Rademacher theorem. The connection of his example with that of Men’shov is elucidated.

Key words

orthonormal system almost-everywhere convergence Weyl multiplier Hilbert matrix system of Price functions Haar measure p-adic expansion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    D. E. Menshov, “Sur les series de fonctions orthogonales,” Fund. Math., 4 (1923), 82–105.Google Scholar
  2. 2.
    B. S. Kashin and A. A. Saakyan, Orthogonal Series [in Russian], AFTs, Moscow, 1999.Google Scholar
  3. 3.
    V. I. Matsaev, “On a class of totally continuous operators,” Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.], 139 (1961), no. 3, 548–551.Google Scholar
  4. 4.
    A. Paskiewich, “A new proof Menshov-Rademacher theorem,” Acta Sci. Math. (to appear).Google Scholar
  5. 5.
    A. N. Naimark, Normalized Rings [in Russian], Nauka, Moscow, 1968.Google Scholar
  6. 6.
    P. Oswald, “On the convergence rate of SOR: A worst case estimate,” Computing, 52 (1994), 245–255.Google Scholar
  7. 7.
    B. I. Golubov, A. V. Efimov, and V. A. Skvortsov, Series and Walsh Transformations: Theory and Applications [in Russian], Nauka, Moscow, 1987.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. P. Solodov
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations