Mathematical Notes

, Volume 78, Issue 1–2, pp 258–263 | Cite as

Concerning an Example of Paskiewich

  • A. P. Solodov


We generalize the construction proposed by A. Paskiewich of an example of an orthonormal system which establishes the sharpness of the Men’shov-Rademacher theorem. The connection of his example with that of Men’shov is elucidated.

Key words

orthonormal system almost-everywhere convergence Weyl multiplier Hilbert matrix system of Price functions Haar measure p-adic expansion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. E. Menshov, “Sur les series de fonctions orthogonales,” Fund. Math., 4 (1923), 82–105.Google Scholar
  2. 2.
    B. S. Kashin and A. A. Saakyan, Orthogonal Series [in Russian], AFTs, Moscow, 1999.Google Scholar
  3. 3.
    V. I. Matsaev, “On a class of totally continuous operators,” Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.], 139 (1961), no. 3, 548–551.Google Scholar
  4. 4.
    A. Paskiewich, “A new proof Menshov-Rademacher theorem,” Acta Sci. Math. (to appear).Google Scholar
  5. 5.
    A. N. Naimark, Normalized Rings [in Russian], Nauka, Moscow, 1968.Google Scholar
  6. 6.
    P. Oswald, “On the convergence rate of SOR: A worst case estimate,” Computing, 52 (1994), 245–255.Google Scholar
  7. 7.
    B. I. Golubov, A. V. Efimov, and V. A. Skvortsov, Series and Walsh Transformations: Theory and Applications [in Russian], Nauka, Moscow, 1987.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. P. Solodov
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations