Mathematical Notes

, Volume 78, Issue 1–2, pp 105–113 | Cite as

Weight Lemma

  • E. I. Nochka


In the paper, we give the first complete presentation of author’s proof of the Weight Lemma, which lies at the basis of the proof of Cartan’s conjecture from the theory of meromorphic curves.

Key words

projective space weighted points general position Cartan’s conjecture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Cartan, “Sur les zeros de combinaisons lineaires de p fonctions holomorphes donnees,” Mathematica (Cluj), 7 (1933), 5–31.Google Scholar
  2. 2.
    N. S. Chekalkin, Uniqueness Theorems of Value Distribution Theory and Special Classes of Holomorphic Maps [in Russian], Cand. Sci. (Phys.-Math.) Dissertation, 1987.Google Scholar
  3. 3.
    W. Chen, “Defect relation for degenerate meromorphic maps,” Trans. Amer. Math. Soc., 319 (1990), 499–515.Google Scholar
  4. 4.
    M. Ru and P. M. Wong, “Integral points of P n (K)\{2n + 1 hyperplanes in general position},” Invent. Math., 106 (1991), 195–216.CrossRefGoogle Scholar
  5. 5.
    P. Vojta, “On Cartan’s theorem and Cartan’s conjecture,” Amer. J. Math., 119 (1997), 1–17.Google Scholar
  6. 6.
    H. Fujimoto, Value Distribution Theory of the Gauss Maps of Minimal Surfaces in ℝ m, Aspects of Math., vol. E21, Friedr. Vieweg & Sohn, Braunschweig, 1993.Google Scholar
  7. 7.
    E. I. Nochka, “On a theorem from linear algebra,” Izv. Akad. Mold. SSR Ser. Fiz.-Mat. Tekhn. (1982), no. 3, 29–33.Google Scholar
  8. 8.
    B. Shiffman, “The second main theorem for log canonical ℝ-divisors,” in: Geometric Complex Analysis (J Noguchi et al., editors), World Scientific, Singapore, 1995, pp. 1–13.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • E. I. Nochka
    • 1
  1. 1.KishinevMoldova

Personalised recommendations