Mathematical Notes

, Volume 77, Issue 1–2, pp 177–193 | Cite as

Local set theory

  • V. K. Zakharov


In 1945, Eilenberg and MacLane introduced the new mathematical notion of category. Unfortunately, from the very beginning, category theory did not fit into the framework of either Zermelo—Fraenkel set theory or even von Neumann—Bernays—Gödel set-class theory. For this reason, in 1959, MacLane posed the general problem of constructing a new, more flexible, axiomatic set theory which would be an adequate logical basis for the whole of naïve category theory. In this paper, we give axiomatic foundations for local set theory. This theory might be one of the possible solutions of the MacLane problem.

Key words

local set theory local-minimal set theory category theory universal class 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Kuratowski and A. Mostowski, Set Theory, PWN, Warsaw, 1968. Russian translation: Mir, Moscow, 1970.Google Scholar
  2. 2.
    J. L. Kelley, General Topology, Van Nostrand, New York, 1955. Russian translation: Nauka, Moscow, 1968.Google Scholar
  3. 3.
    E. Mendelson, Introduction to Mathematical Logic, Van Nostrand, Princeton, N.J., 1964. Russian translation: Nauka, Moscow, 1971.Google Scholar
  4. 4.
    S. Eilenberg and S. MacLane, “General theory of natural equivalences,” Trans. Amer. Math. Soc., 58 (1945), 231–294.Google Scholar
  5. 5.
    S. MacLane (Mac-Lane), “Locally small categories and the foundations of set theory,” in: Infinitistic Methods (Proc. Sympos. Foundations of Math., Warsaw, 1959), Pergamon, Oxford, 1961, pp. 25–43.Google Scholar
  6. 6.
    C. Ehresmann, “Guttungen von lokalen Strukturen,” J.-ber. Deutsch. Math. Verein., 60 (1957), no. 2, 49–77.Google Scholar
  7. 7.
    P. Dedecker, “Introduction aux structures locales,” Coll. Géom. Diff. Glob. Bruxelles (1958), 103–135.Google Scholar
  8. 8.
    J. Sonner, “The formal definition of categories,” Math. Z., 80 (1962), 163–176.Google Scholar
  9. 9.
    P. Gabriel, “Des catégories abéliennes,” Bull. Soc. Math. France, 90 (1962), 323–448.Google Scholar
  10. 10.
    N. da Costa, “On two systems of set theory,” Proc. Koninkl. Nederl. Akad. Wet. Ser. A, 68 (1965), no. 1, 95–98.Google Scholar
  11. 11.
    N. da Costa, “Two formal systems of set theory,” Proc. Koninkl. Nederl. Akad. Wet. Ser. A, 70 (1967), no. 1, 45–51.Google Scholar
  12. 12.
    J. Isbell, “Structure of categories,” Bull. Amer. Math. Soc., 72 (1966), 619–655.Google Scholar
  13. 13.
    S. MacLane, “One universe as a foundation for category theory,” Lecture Notes in Math., 106 (1969), 192–200.Google Scholar
  14. 14.
    S. MacLane, Categories for a Working Mathematician, Springer-Verlag, Berlin, 1971.Google Scholar
  15. 15.
    S. Feferman, “Set-theoretical foundations of category theory,” Lecture Notes in Math., 106 (1969), 201–247.Google Scholar
  16. 16.
    H. Herrlich and G. Strecker, Category Theory: An Introduction, Heldermann Verlag, Berlin, 1979.Google Scholar
  17. 17.
    V. K. Zakharov and A. V. Mikhalev, “A local theory of classes and sets as a basis for category theory,” in: Mathematical Methods and Applications: Proc. IX Mathematical Readings, Moscow State Social University [in Russian], Mosk. Gos. Sotsial’nyi Univ., Moscow, 2002, pp. 91–94.Google Scholar
  18. 18.
    P. V. Andreev, E. I. Bunina, V. K. Mikhalev, and A. V. Zakharov, “Foundations of category theory in the framework of local set theory,” in: Abstracts of International Algebraic Conference [in Russian], Peterburg. Otdelenie Mat. Inst., St. Petersburg, 2002, pp. 10–11.Google Scholar
  19. 19.
    W. S. Hatcher, The Logical Foundations of Mathematics, Pergamon Press, Oxford, 1982.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • V. K. Zakharov
    • 1
  1. 1.Center of New Information TechnologiesM. V. Lomonosov Moscow State UniversityRussia

Personalised recommendations