Letters in Mathematical Physics

, Volume 39, Issue 1, pp 1–8 | Cite as

Field Theory on a q = −1 Quantum Plane

  • Andrzej Sitarz


We build a q = −1 deformation of a plane on a product of two copies of algebras of functions on the plane. This algebra contains a subalgebra of functions on the plane. We present a general scheme (which could be also used to construct a quaternion from pairs of complex numbers) and we use it to derive differential structures and metrics, and discuss sample field-theoretical models.


quantum plane noncommutative geometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Manin, Yu. 1991Topics in Noncommutative GeometryPrinceton University PressPrinceton NJGoogle Scholar
  2. Zakrzewski, S. 1991Matrix pseudogroups associated with anti-commutative planeLett. Math. Phys.21309321CrossRefGoogle Scholar
  3. Chryssomalakos, C., Schupp, P., Zumino, B. 1994Induced extended calculus on the quantum planeAlgebra Anal.6252Google Scholar
  4. Wess, J., Zumino, B. 1991Covariant di.erential calculus on the quantum hyperplaneNuclear Phys. B. (Proc. Suppl.)18302312CrossRefGoogle Scholar
  5. Connes, A. 1994Noncommutative GeometryAcademic PressNew YorkGoogle Scholar
  6. Sitarz, A.: Metric on quantum spaces, Lett. Math. Phys. 31 (1994), 35-39.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  1. 1.Department of Theoretical Physics, Institute of PhysicsJagiellonian UniversityKrakówPoland

Personalised recommendations