Twisted and non-twisted deformed Virasoro algebras via vertex operators of \(U_q(\widehat{\mathfrak {sl}}_2)\)

Abstract

The work is devoted to a probably new connection between deformed Virasoro algebra and quantum affine algebra \(\mathfrak {sl}_2\). We give an explicit realization of Virasoro current via the vertex operators of the level 1 integrable representations of quantum affine algebra \(\mathfrak {sl}_2\). The same is done for a twisted version of deformed Virasoro algebra.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Bershtein, M., Gonin, R.: Twisted representations of algebra of q-difference operators, twisted \(q\)-\(W\) algebras and conformal blocks. Preprint arXiv:1906.00600, (2019)

  2. 2.

    Bouwknegt, P., Pilch, K.: The deformed Virasoro algebra at roots of unity. Commun. Math. Phys. 196(2), 249–288 (1998)

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Ding, J., Iohara, K.: Drinfeld comultiplication and vertex operators. J. Geom. Phys. 23(1), 1–13 (1997)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Feigin, B., Frenkel, E.: Quantum \({\cal{W} }\)-algebras and elliptic algebras. Commun. Math. Phys. 178(3), 653–678 (1996)

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    Feigin, B., Feigin, E., Jimbo, M., Miwa, T., Mukhin, E.: Quantum continuous \(gl _\infty \): tensor products of Fock modules and \({\cal{W}}_n\)-characters. Kyoto J. Math. 51(2), 365–392 (2011)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Feigin, B., Hoshino, A., Shibahara, J., Shiraishi, J., Yanagida, S.: Kernel function and quantum algebra. RIMS Kokyuroku 1689, 133–152 (2010)

    Google Scholar 

  7. 7.

    Gorsky, E., Neguţ, A.: Infinitesimal change of stable basis. Selecta Math. 23(3), 1909–1930 (2017)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Jimbo, M., Miwa, T.: Algebraic analysis of solvable lattice models, vol 85 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, (1995)

  9. 9.

    Koyama, Y.: Staggered polarization of vertex models with \(U_{q} (\widehat{{{\text{ sl }}(n)}})\)-symmetry. Commun. Math. Phys. 164(2), 277–291 (1994)

    ADS  Article  Google Scholar 

  10. 10.

    Maillet, J.M., Niccoli, G.: On quantum separation of variables. J. Math. Phys. 59(9), 091417–091447 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    Neguţ, A.: The \(q\)-AGT-W relations via shuffle algebras. Commun. Math. Phys. 358(1), 101–170 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    Shiraishi, J.: Free field constructions for the elliptic algebra \({\cal{A}}_{{q,p}} (\widehat{{{\text{ sl }}}}_{2} )\) and Baxter’s eight-vertex model. Int. J. Modern Phys. A 19, 363–380 (2004)

    ADS  Article  Google Scholar 

  13. 13.

    Shiraishi, J., Kubo, H., Awata, H., Odake, S.: A quantum deformation of the Virasoro algebra and the Macdonald symmetric functions. Lett. Math. Phys. 38(1), 33–51 (1996)

    ADS  MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to B. Feigin, E. Gorsky, M. Jimbo, M. Lashkevich, A. Neguț, Y. Pugai, J. Shiraishi for interest in our work and discussions. The work was partially supported by the Russian Foundation of Basic Research under grant mol_a_ved 18-31-20062 and by the HSE University Basic Research Program, Russian Academic Excellence Project ’5-100. R.G. was also supported by the ‘Young Russian Mathematics’ award.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mikhail Bershtein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bershtein, M., Gonin, R. Twisted and non-twisted deformed Virasoro algebras via vertex operators of \(U_q(\widehat{\mathfrak {sl}}_2)\). Lett Math Phys 111, 22 (2021). https://doi.org/10.1007/s11005-021-01362-9

Download citation

Keywords

  • Deformed Virasoro algebra
  • Quantum affine algebra
  • Vertex operators

Mathematics Subject Classification

  • 17B68
  • 17B37
  • 17B69
  • 17B67
  • 81R10