## Abstract

The Teukolsky equations are currently the leading approach for analysing stability of linear massless fields propagating in rotating black holes. It has recently been shown that the geometry of these equations can be understood in terms of a connection constructed from the conformal and complex structure of Petrov type D spaces. Since the study of linear massless fields by a combination of conformal, complex and spinor methods is a distinctive feature of twistor theory, and since versions of the twistor equation have recently been shown to appear in the Teukolsky equations, this raises the question of whether there are deeper twistor structures underlying this geometry. In this work we show that all these geometric structures can be understood naturally by considering a *2-dimensional* twistor manifold, whereas in twistor theory the standard (projective) twistor space is 3-dimensional.

This is a preview of subscription content, log in to check access.

## Notes

- 1.
This subsection is related to the ‘usual’ twistor space, i.e. not to its ‘dual’ version, which is the one that we use in the rest of the paper.

- 2.
If we fix \(\zeta ^{A'}\) and vary \(\lambda ^A\) instead, the resulting 2-plane is an ‘\(\alpha \)-plane’, and (projective) twistor space \(\mathbb {PT}\) is the space of \(\alpha \)-planes.

- 3.
There are important subtleties that we are omitting here, namely the fact that it is not actually the whole \(\mathbb {PT}^{*}\) which enters (2.7) but the region with \(\lambda _{A}\ne 0\); we do not need to discuss this for the purposes of our presentation.

- 4.
Note that, consistently, equation (3.1) is conformally invariant if \(\xi ^A\) has well-defined conformal weight.

- 5.
Our main reference for concepts and definitions regarding conformal geometry is [43].

- 6.
- 7.
Note that the spin group \(\mathrm{SL}(2,\mathbb {C})\) can be decomposed as \(\mathrm{SL}(2,\mathbb {C})\cong \mathbb {C}^{\times }\times \mathbb {C}^{+}\times \mathbb {C}^{+}\), where \(\mathbb {C}^{\times }\) is the ‘GHP part’ and the two factors of \(\mathbb {C}^{+}\) correspond to null rotations around the spinors of the frame.

- 8.
Note that (3.10) is a

*complex*map, whereas the usual notion of an almost-complex structure requires it to be real. However, as shown in Theorem VIII.3 in [25], a Lorentzian manifold (which is ultimately the most interesting case for our purposes) cannot admit a (real) almost-Hermitian structure, so we are forced to consider this complex-valued almost-Hermitian structure (in [25] this is referred to as a ‘modified’ Hermitian structure). We will give an interpretation of (3.10) in Sect. 4.2 below. - 9.
I am grateful to J. L. Jaramillo for suggesting looking into this.

- 10.
Note that, roughly speaking, a fibre of \(\langle \xi ^A\rangle \) corresponds to a single point in a fibre of \(\mathbb {P}\mathcal {S}^A\).

- 11.
Of course, the ‘if and only if’ part of the linearized version of the Goldberg-Sachs theorem is not valid, as shown in [19].

- 12.
In what follows, for a quantity \(T(\varepsilon )\) we use the notation \(\mathring{T}\equiv T(0)\) and \({\dot{T}}\equiv \frac{d}{d\varepsilon }|_{\varepsilon =0}T(\varepsilon )\).

- 13.
I am very grateful to M. Dunajski and L. Mason for discussions about this and for suggesting references.

- 14.
I thank M. Dunajski for bringing this reference to my attention.

- 15.
The equation \(\nabla _{A'}{}^{(A}X^{BC)}=0\) is conformally invariant, so \(\nabla _{AA'}\) here is any Levi-Civita connection in the conformal class.

- 16.
I am grateful to L. Mason for this suggestion.

## References

- 1.
Adamo, T.: Lectures on twistor theory. PoS Modave

**2017**, 003 (2018). [arXiv:1712.02196 [hep-th]] - 2.
Aksteiner, S., Andersson, L.: Linearized gravity and gauge conditions. Class. Quant. Grav.

**28**, 065001 (2011). [arXiv:1009.5647 [gr-qc]] - 3.
Aksteiner, S., Andersson, L., Bäckdahl, T.: New identities for linearized gravity on the Kerr spacetime. Phys. Rev. D

**99**(4), 044043 (2019). [arXiv:1601.06084 [gr-qc]] - 4.
Andersson, L., Blue, P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime. Ann. Math.

**182**(3), 787–853 (2015). [arXiv:0908.2265 [math.AP]] - 5.
Andersson, L., Bäckdahl, T., Blue, P.: Second order symmetry operators. Class. Quant. Grav.

**31**, 135015 (2014). [arXiv:1402.6252 [gr-qc]] - 6.
Andersson, L., Bäckdahl, T., Blue, P., Ma, S.: Stability for linearized gravity on the Kerr spacetime, arXiv:1903.03859 [math.AP]

- 7.
Araneda, B.: Symmetry operators and decoupled equations for linear fields on black hole spacetimes. Class. Quant. Grav.

**34**(3), 035002 (2017). [arXiv:1610.00736 [gr-qc]] - 8.
Araneda, B.: Generalized wave operators, weighted Killing fields, and perturbations of higher dimensional spacetimes. Class. Quant. Grav.

**35**(7), 075015 (2018). [arXiv:1711.09872 [gr-qc]] - 9.
Araneda, B.: Conformal invariance, complex structures and the Teukolsky connection. Class. Quant. Grav.

**35**(17), 175001 (2018). [arXiv:1805.11600 [gr-qc]] - 10.
Araneda, B.: work in progress

- 11.
Atiyah, M., Dunajski, M., Mason, L.: Twistor theory at fifty: from contour integrals to twistor strings. Proc. Roy. Soc. Lond. A

**473**(2206), 20170530 (2017). [arXiv:1704.07464 [hep-th]] - 12.
Bailey, T.N.: A conformally invariant connection and the space of leaves of a shear free congruence, Twistor Newsletter \(\mathbb{TN}26\) pp. 31–39 (1988)

- 13.
Bailey, T.N.: Relative cohomology power series, Robinson’s theorem and multipole expansions, Twistor Newsletter \(\mathbb{TN}26\) pp. 40–43 (1988)

- 14.
Bailey, T.N.: The space of leaves of a shear-free congruence, multipole expansions, and Robinson’s theorem. J. Math. Phys.

**32**, 1465 (1991) - 15.
Bailey, T.N.: Complexified conformal almost-Hermitian structures and the conformally invariant eth and thorn operators. Class. Quant. Grav.

**8**(1), 56 (1991) - 16.
Bini, D., Cherubini, C., Jantzen, R.T., Ruffini, R.J.: Teukolsky master equation: De Rham wave equation for the gravitational and electromagnetic fields in vacuum. Prog. Theor. Phys.

**107**, 967 (2002). [gr-qc/0203069] - 17.
Boyer, C.P., Finley, J.D., Plebanski, J.F.: Complex general relativity, H and HH spaces: a survey of one approach. In: Held, A. (ed.) General Relativity and Gravitation, vol. II, pp. 241–281. Plenum, New York (2019)

- 18.
Calderbank, D.M.J.: Selfdual 4-Manifolds. Projective Surfaces, and the Dunajski-West Construction, SIGMA

**10**, 035, 18 (2014). [arXiv:math/0606754 [math.DG]] - 19.
Dain, S., Moreschi, O.M.: The Goldberg-Sachs theorem in linearized gravity. J. Math. Phys.

**41**, 6296 (2000). [arXiv:gr-qc/0203057] - 20.
Dunajski, M., West, S.: Anti-self-dual conformal structures with null Killing vectors from projective structures. Commun. Math. Phys.

**272**, 85 (2007). [arXiv:math/0601419 [math.DG]] - 21.
Dunajski, M., Tod, P.: Four-dimensional metrics conformal to Kahler. Math. Proc. Cambridge Phil. Soc.

**148**, 485 (2010). [arXiv:0901.2261 [math.DG]] - 22.
Dunajski, M.: Solitons, instantons, and twistors. Oxford graduate texts in mathematics, vol. 19

- 23.
Finley III, J.D., Plebanski, J.F.: The intrinsic spinorial structure of hyperheavens. J. Math. Phys.

**17**, 2207 (1976) - 24.
Flaherty Jr., E.J.: An integrable structure for type D spacetimes. Phys. Lett. A

**46**, 391–392 (1974) - 25.
Flaherty Jr., E.J.: Hermitian and Kählerian Geometry in Relativity. Springer Lecture Notes in Physics, vol. 46. Springer, New York (1976)

- 26.
Frolov, V., Krtous, P., Kubiznak, D.: Black holes, hidden symmetries, and complete integrability. Living Rev. Rel.

**20**(1), 6 (2017). [arXiv:1705.05482 [gr-qc]] - 27.
Gover, A.R., Nurowski, P.: Calculus and invariants on almost complex manifolds, including projective and conformal geometry. Illinois J. Math.

**57**(2), 383–427 (2013). [arXiv:1208.0648 [math.DG]] - 28.
Huggett, S.A., Tod, K.P.: An Introduction To Twistor Theory. London Mathematical Society Student Texts, vol. 4, p. 145. University Press, Cambridge (1985)

- 29.
Hughston, L.P., et al.: Advances In Twistor Theory. Research Notes In Mathematics, vol. 37, p. 335. Pitman, San Francisco (1979)

- 30.
Kegeles, L.S., Cohen, J.M.: Constructive procedure for perturbations of space-times. Phys. Rev. D

**19**, 1641 (1979) - 31.
Khavkine, I.: The Calabi complex and Killing sheaf cohomology. J. Geom. Phys.

**113**, 131 (2017). [arXiv:1409.7212 [gr-qc]] - 32.
Mason, L.J., Woodhouse, N.M.J.: Integrability, Selfduality, and Twistor Theory. London Mathematical Society Monographs, vol. 15, p. 364. Clarendon, Oxford (1996)

- 33.
Nakahara, M.: Geometry, Topology and Physics, p. 573. Taylor & Francis, Boca Raton (2003)

- 34.
Penrose, R.: Twistor algebra. J. Math. Phys.

**8**, 345 (1967) - 35.
Penrose, R., MacCallum, M.: Twistor theory: an approach to the quantisation of fields and space-time. Phys. Rep.

**6**(4), 241–315 (1973) - 36.
Penrose, R.: Nonlinear gravitons and curved twistor theory. Gen. Rel. Grav.

**7**, 31 (1976) - 37.
Penrose, R., Rindler, W.: Spinors and Space-Time. 1. Two Spinor Calculus and Relativistic Fields. Cambridge Monographs on Mathematical Physics, p. 458. University Press, Cambridge (1984)

- 38.
Penrose, R., Rindler, W.: Spinors and Space-Time. Vol. 2: Spinor and Twistor Methods in Space-time Geometry. University Press, Cambridge (1986)

- 39.
Plebanski, J.F., Robinson, I.: Left-degenerate vacuum metrics. Phys. Rev. Lett.

**37**, 493 (1976) - 40.
Prabhu, K., Wald, R.M.: Canonical energy and hertz potentials for perturbations of Schwarzschild spacetime. Class. Quant. Grav.

**35**(23), 235004 (2018). [arXiv:1807.09883 [gr-qc]] - 41.
Teukolsky, S.A.: Rotating black holes–separable wave equations for gravitational and electromagnetic perturbations. Phys. Rev. Lett.

**29**, 1114 (1972) - 42.
Teukolsky, S.A.: Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations. Astrophys. J.

**185**, 635 (1973) - 43.
Valiente Kroon, J.A.: Conformal Methods in General Relativity. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139523950

- 44.
Walker, M., Penrose, R.: On quadratic first integrals of the geodesic equations for type [22] spacetimes. Commun. Math. Phys.

**18**, 265 (1970) - 45.
Ward, R.S., Wells, R.O.: Twistor Geometry and Field Theory. Cambridge University Press, Cambridge (1991)

- 46.
Wells, R.O.: Differential Analysis on Complex Manifolds. Springer, New York (1980)

- 47.
Witten, E.: Perturbative gauge theory as a string theory in twistor space. Commun. Math. Phys.

**252**, 189 (2004). [arXiv:hep-th/0312171]

## Acknowledgements

It is a pleasure to thank Steffen Aksteiner, Lars Andersson, Thomas Bäckdahl, Igor Khavkine and Lionel Mason for very helpful discussions, that took place at the Institut Mittag-Leffler (Djursholm, Sweden) in the fall 2019. I am also very thankful to Tim Adamo, Maciej Dunajski and George Sparling for comments about this work during the conference “Twistors meet Loops in Marseille”, held at CIRM (France) in September 2019; in particular I want to thank M. Dunajski for several illuminating conversations in this conference and also during a visit to Cambridge University in November 2019. The hospitality and support of all the institutions mentioned above are also gratefully acknowledged. Finally I thank Gustavo Dotti, José Luis Jaramillo, Oscar Reula and Juan Valiente Kroon for supportive comments on this work and on a previous version of this manuscript. This work is partially supported by a postdoctoral fellowship from CONICET (Argentina).

## Author information

### Affiliations

### Corresponding author

## Additional information

### Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The current version of this paper is based upon work supported by the Swedish Research Council under Grant No. 2016-06596 while the author was in residence at Institut Mittag-Leffler in Djursholm, Sweden, during the fall 2019.

## Rights and permissions

## About this article

### Cite this article

Araneda, B. Two-dimensional twistor manifolds and Teukolsky operators.
*Lett Math Phys* (2020). https://doi.org/10.1007/s11005-020-01307-8

Received:

Revised:

Accepted:

Published: