Quadratic open quantum harmonic oscillator


We study the quantum open system evolution described by a Gorini–Kossakowski–Sudarshan–Lindblad generator with creation and annihilation operators arising in Fock representations of the \(\mathfrak {sl}_2\) Lie algebra. We show that any initial density matrix evolves to a fully supported density matrix and converges towards a unique equilibrium state. We show that the convergence is exponentially fast and we exactly compute the rate for a wide range of parameters. We also discuss the connection with the two-photon absorption and emission process.

This is a preview of subscription content, log in to check access.

Fig. 1


  1. 1.

    Accardi, L., Dhahri, A.: Quadratic exponential vectors. J. Math. Phys. 50, 122103 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  2. 2.

    Accardi, L., Dhahri, A.: The quadratic Fock functor. J. Math. Phys. 51, 022105 (2010)

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Accardi, L., Fagnola, F., Quezada, R.: On three new principles in non-equilibrium statistical mechanics and Markov semigroups of weak coupling limit type Infin. Dimens. Anal. Quantum Probab. Relat. Top. 19, 1650009 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Accardi, L., Franz, U., Skeide, M.: Renormalized squares of white noise and other non-Gaussian noises as Lévy processes on real Lie algebras. Commun. Math. Phys. 228, 123–150 (2002)

    ADS  Article  Google Scholar 

  5. 5.

    Accardi, L., Lu, Y.G., Volovich, I.: Quantum Theory and Its Stochastic Limit. Springer, Berlin (2002)

    Google Scholar 

  6. 6.

    Atakishiyev, M.N., Atakishiyev, N.M.: On \(su_q(1,1)\) models of quantum oscillator. J. Math. Phys. 47, 093502 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    Carbone, R., Fagnola, F.: Exponential \(L_2\)-convergence of quantum Markov semigroup on \({\cal{B}}(h)\). Math. Notes 68(4), 452–463 (2000)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Carbone, R., Fagnola, F., García, J.C., Quezada, R.: Spectral properties of the two-photon absorption and emission process. J. Math. Phys. 49(3), 32106 (2008)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Dhahri, A., Fagnola, F., Rebolledo, R.: The decoherence-free subalgebra of a quantum Markov semigroup with unbounded generator. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 13(3), 413–433 (2010)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Dhahri, A.: On the quadratic Fock functor. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 15(2), 1250012 (2012)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Dhahri, A.: Self-adjointness and boundedness in quadratic quantization. J. Math. Phys. 55, 052103 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    Fagnola, F.: Quantum Markov semigroups and quantum Markov flows. Proyecciones 18(3), 1–144 (1999)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Fagnola, F., Rebolledo, R.: Lectures on the qualitative analysis of quantum Markov semigroups. In: Quantum Interacting Particle Systems, pp. 197–239. Trento (2000). QP–PQ: Quantum Probability and White Noise Analysis, vol. 14. World Scientific Publishing, River Edge, NJ (2002)

  14. 14.

    Fagnola, F., Rebolledo, R.: Subharmonic projections for a quantum Markov semigroup. J. Math. Phys. 43(2), 1074–1082 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    Fagnola, F., Rebolledo, R.: Transience and recurrence of quantum Markov semigroups. Probab. Theory Relat. Fields 126(2), 289–306 (2003)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Fagnola, F., Quezada, R.: Two-photon absorption and emission process. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8(4), 573–591 (2005)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Fagnola, F., Umanità, V.: Generators of KMS symmetric Markov semigroups on \(\cal{B}({\sf h})\) symmetry and quantum detailed balance. Commun. Math. Phys. 298, 523–547 (2010)

    ADS  MathSciNet  Article  Google Scholar 

  18. 18.

    Frigerio, A.: Quantum dynamical semigroups and approach to equilibrium. Lett. Math. Phys. 2, 79–87 (1977)

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    García, J.C., Quezada, R.: Hille–Yosida estimate and nonconservativity criteria for quantum dynamical semigroups. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 7(3), 383–394 (2004)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Hachicha, S., Nasroui, I., Gliouez, S.: The support projection of state of QMS with unbounded generator and a quantum extension of the classical Lévy–Austin–Ornstein theorem. Open. Syst. Inf. Dyn.

  21. 21.

    Isar, A., Scheid, W.: Uncertainty functions of the open quantum harmonic oscillator in the Lindblad theory. Phys. Rev. A 66, 042117 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  22. 22.

    Karlin, S., McGregor, J.: The classification of birth and death processes. Trans. Am. Math. Soc. 86(2), 366–400 (1957)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Liggett, T.: Exponential \(L_2\) convergence of attractive reversible nearest particle systems. Ann. Prob. 17(2), 403–432 (1989)

    Article  Google Scholar 

  24. 24.

    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New-York (1983)

    Google Scholar 

  25. 25.

    Simon, M., Valent, G.: Spectral analysis of birth-and-death processes with and without killing via perturbation. Methods Appl. Anal. 16(1), 055–068 (2009)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Śniady, P.: Quadratic bosonic and free white noises. Commun. Math. Phys. 211(3), 615–628 (2000)

    ADS  MathSciNet  Article  Google Scholar 

Download references


A. Dhahri acknowledges support by Fondo professori stranieri DHG9VARI01 Politecnico di Milano. The research by H. J. Yoo was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B03936006).

Author information



Corresponding author

Correspondence to Ameur Dhahri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dhahri, A., Fagnola, F. & Yoo, H.J. Quadratic open quantum harmonic oscillator. Lett Math Phys 110, 1759–1782 (2020). https://doi.org/10.1007/s11005-020-01274-0

Download citation


  • Quantum harmonic oscillator
  • Quantum Markov semigroup
  • Fock representations of the \(\mathfrak {sl}_2\) algebra
  • Spectral gap

Mathematics Subject Classification

  • 46L55
  • 82C10
  • 60J27