Skip to main content
Log in

The unrolled quantum group inside Lusztig’s quantum group of divided powers

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this letter we prove that the unrolled small quantum group, appearing in quantum topology, is a Hopf subalgebra of Lusztig’s quantum group of divided powers. We do so by writing down non-obvious primitive elements with the correct adjoint action. As application, we explain how this gives a realization of the unrolled quantum group as operators on a conformal field theory and match some calculations on this side. In particular, our results explain a prominent weight shift that appears in Feigin and Tipunin (Logarithmic CFTs connected with simple Lie algebras, preprint, 2010. arXiv:1002.5047). Our result extends to other Nichols algebras of diagonal type, including super-Lie algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. I wish to thank David Jordan for pointing out this reference, which covers the general case.

  2. Morally the reader should have in mind \(H_\alpha =\frac{K_{\alpha }^{2\ell _\alpha }-1}{v_\alpha ^{2\ell _\alpha }-1}\), which differs in the specialization by a nonzero scalar.

References

  1. Andruskiewitsch, N., Angiono, I., Rossi Bertone, F.: The quantum divided power algebra of a finite-dimensional Nichols algebra of diagonal type, preprint. arXiv:1501.04518 (2015)

  2. Angiono, I.: Distinguished pre-Nichols algebras. Transform. Groups 21(1), 1–33 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andruskiewitsch, N.: Note on extensions of Hopf algebras. Can. J. Math. 48(1), 3–42 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andruskiewitsch, N., Heckenberger, I., Schneider, H.-J.: The Nichols algebra of a semisimple Yetter–Drinfeld module. Am. J. Math. 132(6), 1493–1547 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Andruskiewitsch, N., Schneider, H.-J.: Finite quantum groups and Cartan matrices. Adv. Math. 154(1), 1–45 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Andruskiewitsch, N., Schneider, H.-J.: On the classification of finite-dimensional pointed Hopf algebras. Ann. Math. 2(1), 375–417 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Andruskiewitsch, N., Schweigert, C.: On unrolled Hopf algebras. arXiv:1701.00153v1

  8. Angiono, I., Yamane, H.: The \(R\)-matrix of quantum doubles of Nichols algebras of diagonal type, preprint. arXiv:1304.5752 (2013)

  9. Costantino, F., Geer, N., Patureau-Mirand, B.: Some remarks on the unrolled quantum group of sl (2). J. Pure Appl. Algebra 219, 3238–3262 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cuntz, M., Heckenberger, I.: Weyl groupoids with at most three objects. J. Pure Appl. Algebra 213(6), 1112–1128 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feigin, B.L., Gainutdinov, A.M., Semikhatov, A.M., Tipunin, I.Y.: Kazhdan–Lusztig correspondence for the representation category of the triplet \(\cal{W}\)-algebra in logarithmic CFT. Teor. Mat. Fiz. 148, 398–427 (2006)

    Article  MATH  Google Scholar 

  12. Feigin, B.L., Tipunin, I.Y.: Logarithmic CFTs connected with simple Lie algebras, preprint. arXiv:1002.5047 (2010)

  13. Gauß, C.F.: Summatio quarumdam serierum singularium, comment. Soc. Reg. Sci. Gott. (1811). Available for example in Werke II, Georg Olms Verlag (1981)

  14. Gainutdinov, A.M., Lentner, S.D., Ohrmann, T.: Modularization of small quantum groups, preprint. arXiv:1809.02116 (2018)

  15. Garcia, G.A., Gavarini, F.: Multiparameter quantum groups at roots of unity, preprint. arXiv:1708.05760 (2017)

  16. Geer, N., Patureau-Mirand, B.: The trace on projective representations of quantum groups. arXiv:1610.09129v1

  17. Geer, N., Patureau-Mirand, B., Turaev, V.: Modified quantum dimensions and re-normalized link invariants. Compos. Math. 145, 196–212 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gainutdinov, A.M., Runkel, I.: Symplectic fermions and a quasi-Hopf algebra structure on \(\bar{U}^-_i(\mathfrak{sl}_2)\), preprint. arXiv:1503.07695 (2015)

  19. Heckenberger, I.: Classification of arithmetic root systems. Adv. Math. 220(1), 59–124 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Heckenberger, I.: Lusztig isomorphisms for Drinfel’d doubles of bosonizations of Nichols algebras of diagonal type. J. Algebra 323(8), 2130–2182 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kondo, H., Saito, Y.: Indecomposable decomposition of tensor products of modules over the restricted quantum universal enveloping algebra associated to \(\mathfrak{sl}_2\). J. Algebra 330(1), 103–129 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lusztig, G.: Quantum groups at roots of 1. Geom. Ded. 35, 89–114 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lusztig, G.: Introduction to Quantum Groups, Progress in Mathematics 110. Birkhäuser, Basel (1993)

    Google Scholar 

  24. Lentner, S.: A Frobenius homomorphism for Lusztig’s quantum groups over arbitrary roots of unity. Commun. Contemp. Math. 18/3, 1550040 (2015)

  25. Lentner, S.: Quantum groups and Nichols algebras acting on conformal quantum field theories, preprint. arXiv:1702.06431 (2017)

  26. Lentner, S., Ohrmann, T.: Factorizable \(R\)-matrices for small quantum groups. SIGMA 13, 76 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Nagatomo, K., Tsuchiya, A.: The triplet vertex operator algebra \(W(p)\) and the restricted quantum group \(U_q(\mathfrak{sl}_2)\) at \(1=e^{\frac{\pi i}{p}}\). Adv. Stud. Pure Math. 61, 1–49 (2011). arXiv:0902.4607

    MATH  Google Scholar 

  28. Reshetikhin, N.: Quasitriangularity of quantum groups at roots of 1. Commun. Math. Phys. 170(1), 79–99 (1995)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Reshetikhin, N., Turaev, V.G.: Invariants of \(3\)-manifolds via link polynomials and quantum groups. Invent. Math. 103, 547–597 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. Tanisaki, T.: Killing forms, Harish–Chandra homomorphisms and universal \(R\)-matrices for quantum algebras. Int. J. Mod. Phys. A 07(supp01b), 941–962 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Acknowledgements

The author thanks C. Schweigert for interesting discussions, input and support. The author receives additional support by the DFG Graduiertenkolleg RTG 1670 at the University of Hamburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Lentner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lentner, S. The unrolled quantum group inside Lusztig’s quantum group of divided powers. Lett Math Phys 109, 1665–1682 (2019). https://doi.org/10.1007/s11005-019-01185-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-019-01185-9

Keywords

Mathematics Subject Classification

Navigation