Skip to main content
Log in

Sinkhorn–Knopp theorem for PPT states

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Given a PPT state \(A=\sum _{i=1}^nA_i\otimes B_i \in M_k\otimes M_k\) and a rank k tensor v within the image of A, we provide an algorithm that checks whether the positive map \(G_A:M_k\rightarrow M_k\), \(G_A(X)=\sum _{i=1}^n tr(A_iX)B_i\), is equivalent to a doubly stochastic map. This procedure is based on the search for Perron eigenvectors of completely positive maps and unique solutions of, at most, k unconstrained quadratic minimization problems. As a corollary, we can check whether this state can be put in the filter normal form. This normal form is an important tool for studying quantum entanglement. An extension of this procedure to PPT states in \(M_k\otimes M_m\) is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bapat, R.: \(D_1AD_2\) theorems for multidimensional matrices. Linear Algebra Appl. 48, 437–442 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bhatia, R.: Positive Definite Matrices. Princeton University Press, Princeton (2009)

    Book  MATH  Google Scholar 

  3. Brualdi, R.A.: The \(DAD\) theorem for arbitrary row sums. Proc. Am. Math. Soc. 45, 189–194 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cariello, D.: Sinkhorn–Knopp theorem for rectangular positive maps. Linear and Multilinear Algebra (2018). https://doi.org/10.1080/03081087.2018.1491524

  5. Cariello, D.: Separability for weakly irreducible matrices. Quantum Inf Comput 14(15–16), 1308–1337 (2014)

    MathSciNet  Google Scholar 

  6. Cariello, D.: Completely reducible maps in quantum information theory. IEEE Trans. Inf. Theory 62(4), 1721–1732 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Choi, M.D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10, 285–290 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. de Seguins Pazzis, C.: Affine spaces of symmetric or alternating matrices with bounded rank. Linear Algebra Appl. 504, 503–558 (2016)

  9. Dieudonné, J.: Sur une généralisation du groupe orthogonal à quatre variables. Archiv der Math. 1(4), 282–287 (1948)

    Article  MATH  Google Scholar 

  10. Dür, W., Vidal, G., Cyrac, J.I.: Optimal conversion of nonlocal unitary operations. Phys. Rev. Lett. 89(5), 057901 (2002)

    Article  ADS  Google Scholar 

  11. Evans, D.E., Høegh-Krohn, R.: Spectral properties of positive maps on C*-algebras. J. Lond. Math. Soc. 2(2), 345–355 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Flanders, H.: On spaces of linear transformations with bounded rank. J. Lond. Math. Soc. 1(1), 10–16 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  13. Garg, A., Gurvits, L., Oliveira, R., Wigderson, A.: A deterministic polynomial time algorithm for non-commutative rational identity testing. In: Foundations of computer science (FOCS), 2016 IEEE 57th annual symposium on, pp. 109–117 (2016)

  14. Garg, A., Gurvits, L., Oliveira, R., Wigderson, A.: Algorithmic and optimization aspects of Brascamp-Lieb inequalities, via operator scaling, arXiv:1607.06711v3

  15. Garg, A., Oliveira, R.: Recent progress on scaling algorithms and applications, arXiv:1808.09669 (2018)

  16. Gittsovich, O., Gühne, O., Hyllus, P., Eisert, J.: Unifying several separability conditions using the covariance matrix criterion. Phys. Rev. A 78, 052319 (2008)

    Article  ADS  MATH  Google Scholar 

  17. Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474(1), 1–75 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. Gurvits, L.: Classical deterministic complexity of Edmonds’ problem and quantum entanglement. In: Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing; Jun 9–11; San Diego, CA. New York: ACM Press, 10–19 (2003)

  19. Gurvits, L.: Classical complexity and quantum entanglement. J. Comput. Syst. Sci. 69(3), 448–484 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232(5), 333–339 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A. 223, 1–8 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Huhtanen, M., Seiskari, O.: Computational geometry of positive definiteness. Linear Algebra Appl. 437(7), 1562–1578 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ivanyos, G., Karpinski, M., Qiao, Y., Santha, M.: Generalized Wong sequences and their applications to Edmonds’ problems. J. Comput. Syst. Sci. 81(7), 1373–1386 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 3, 275–278 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Khachian, L.G.: A polynomial algorithm for linear programming, Doklady Akademiia Nauk USSR, 244, 1093–1096 [English translation: Soviet Mathematics Doklady 20, 191–194] (1979)

  26. Kraus, B., Cyrac, J.I.: Optimal creation of entanglement using a two-qubit gate. Phys. Rev. A 63(6), 062309 (2001)

    Article  ADS  Google Scholar 

  27. Landau, L.J., Streater, R.F.: On Birkhoff’s theorem for doubly stochastic completely positive maps of matrix algebras. Linear Algebra Appl. 193, 107–127 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Leinaas, J.M., Myrheim, J., Ovrum, E.: Geometrical aspects of entanglement. Phys. Rev. A 74(3), 012313 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  29. Lovász, L.: Singular spaces of matrices and their application in combinatorics. Bol. da Soc. Bras. de Mat.-Bull./Braz. Math. Soc. 20(1), 87–99 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  30. Meshulam, R.: On the maximal rank in a subspace of matrices. Q. J. Math. 36(2), 225–229 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Meshulam, R.: On two extremal matrix problems. Linear Algebra Appl. 114, 261–271 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  32. Meshulam, R.: Maximal rank in matrix spaces via graph matchings. Linear Algebra Appl. 529, 1–11 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Meyer, C.D.: Matrix analysis and applied linear algebra, 71. SIAM, Philadelphia (2000)

  34. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77(8), 1413 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Sinkhorn, R.: Diagonal equivalence to matrices with prescribed row and column sums. II. Proc. Am. Math. Soc 45(2), 195–198 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sinkhorn, R., Knopp, P.: Concerning nonnegative matrices and doubly stochastic matrices. Pac. J. Math. 21(2), 343–348 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  37. Verstraete, F., Dehaene, J., De Moor, B.: Normal forms and entanglement measures for multipartite quantum states. Phys. Rev. A 68, 012103 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  38. Zaidi, A.: Positive definite combination of symmetric matrices. IEEE Trans. Signal Process. 53(11), 4412–4416 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Cariello.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 1

By Definition 2, \(T(X)=\sum _{i=1}^mA_iXA_i^*.\)

Now, if \(T(V)=\sum _{i=1}^mA_iVA_i^*\in VM_kV\), then \(A_iVA_i^*\in VM_kV\), for every i.

Since \(A_iVA_i^*=A_iV(A_iV)^*\), then \(A_iV\in VM_k\). Thus, \(VA_i^*\in M_kV\), for every i.

Hence, \(A_i(VX+YV)A_i^*\in VM_k+M_kV\), for every \(X,Y\in M_k\). \(\square \)

Proof of Lemma 2

(a) Note that

$$\begin{aligned} 0= & {} tr(T(V_1)(V-V_1))=tr(V_1T^*(V-V_1))=tr(VV_1VT^*(V-V_1))\\= & {} tr(V_1VT^*(V-V_1)V). \end{aligned}$$

Thus, \(\mathfrak {I}(VT^*(V-V_1)V)\subset \mathfrak {I}(V-V_1)\) and

$$\begin{aligned} VT^*((V-V_1)M_k(V-V_1))V\subset (V-V_1)M_k(V-V_1). \end{aligned}$$

(b) If \(T|_{VM_kV}\) is not irreducible, neither is \(VT^*(\cdot )V|_{VM_kV}\) by item (a).

Now, if \(VT^*(\cdot )V:VM_kV\rightarrow VM_kV\) is not irreducible, then there is a proper subalgebra \(V_1M_kV_1\subset VM_kV\) such that \(VT^*(V_1M_kV_1)V\subset V_1M_kV_1\) and \(V_1\ne 0\).

Hence, \(0=tr(VT^*(V_1)V(V-V_1))=tr(T^*(V_1)V(V-V_1)V)=tr(V_1T(V-V_1))\). Thus,

$$\begin{aligned} T((V-V_1)M_k(V-V_1))\subset (V-V_1)M_k(V-V_1). \end{aligned}$$

(c) Let \(\gamma \in P_k\cap VM_kV\) be such that \(\gamma ^2=\delta \). Denote by \(\gamma ^{+}\) the Hermitian pseudo-inverse of \(\gamma \). So \(\gamma ^{+}\gamma =\gamma \gamma ^{+}=V\).

Note that \(\frac{1}{\lambda }\gamma ^{+}T(\gamma V\gamma )\gamma ^{+}=V\). Therefore, the operator norm of

$$\begin{aligned} \frac{1}{\lambda }\gamma ^{+}T(\gamma (\cdot ) \gamma )\gamma ^{+}:VM_kV\rightarrow VM_kV \end{aligned}$$

induced by the spectral norm on \(M_k\) is 1 [2, Theorem 2.3.7].

Let \(Y\in VM_kV\) be an eigenvector of \(T:VM_kV\rightarrow VM_kV\) associated with \(\alpha \) such that the spectral norm of \(\gamma ^{+}Y\gamma ^{+}\) is 1. Then, the spectral norm of \(\frac{1}{\lambda }\gamma ^{+}T(\gamma \gamma ^{+}Y\gamma ^{+} \gamma )\gamma ^{+}=\frac{\alpha }{\lambda }\gamma ^{+}Y\gamma ^{+}\) is smaller or equal to the operator norm of \(\frac{1}{\lambda }\gamma ^{+}T(\gamma (\cdot ) \gamma )\gamma ^{+}:VM_kV\rightarrow VM_kV\). Thus, \(\frac{|\alpha |}{\lambda }\le 1\). \(\square \)

Proof of Lemma 3

Since \(VT^*(\cdot )V|_{VM_kV}\) and \(T|_{VM_kV}\) are adjoint with respect to the trace inner product and \(\lambda \in {\mathbb {R}}\), then \(\text {rank}(VT^*(\cdot )V-\lambda Id|_{VM_kV})= \text {rank}(T-\lambda Id|_{VM_kV})\). So the geometric multiplicity of \(\lambda \) is the same for both maps.

Moreover, \(T|_{VM_kV}\) is irreducible if and only if \(VT^*(\cdot )V|_{VM_kV}\) is irreducible by Lemma 2. item (b). So conditions (1) and (2) are necessary for irreducibility by Perron–Frobenius theory [11, Theorem 2.3].

Next, let us assume by contradiction that conditions (1) and (2) hold and \(T|_{VM_kV}\) is not irreducible.

Thus, there is an orthogonal projection \(V_1\in M_k\) such that \(T(V_1M_kV_1)\subset V_1M_kV_1\), \(V_1V=VV_1=V_1\) and \(V-V_1\ne 0\).

By item (a) of Lemma 2, \(VT^*((V-V_1)M_k(V-V_1))V\subset (V-V_1)M_k(V-V_1)\). Since \(T^*:M_k\rightarrow M_k\) is completely positive, then \(VT^*(\cdot )V:M_k\rightarrow M_k\) is too.

Hence, by Lemma 1,

$$\begin{aligned} VT^*((V-V_1)M_k+M_k(V-V_1))V\subset (V-V_1)M_k+M_k(V-V_1). \end{aligned}$$
(5)

Now, since \(V_1V=V_1\) and \(\lambda \delta =VT^*(\delta )V=VT^*((V-V_1)\delta +V_1\delta (V-V_1))V+VT^*(V_1\delta V_1)V\), then, by Eq. 5, \(\lambda V_1\delta V_1=V_1T^*(V_1\delta V_1)V_1.\)

Note that \(V_1\delta V_1\ne 0\), since \(\mathfrak {I}(V_1)\subset \mathfrak {I}(V)=\mathfrak {I}(\delta )\). Hence, \(\lambda \) is an eigenvalue of \(V_1T^*(\cdot )V_1: V_1M_kV_1\rightarrow V_1M_kV_1\). Therefore, it is also an eigenvalue of its adjoint \(T:V_1M_kV_1\rightarrow V_1M_kV_1\).

Actually, \(\lambda \) is the spectral radius of \(T|_{V_1M_kV_1}\), since \(V_1M_kV_1\subset VM_kV\) and by hypothesis. So, by Perron–Frobenius theory, there is \(\gamma '\in (V_1M_kV_1 \cap P_k){\setminus } \{0\}\) such that \(T(\gamma ')=\lambda \gamma '\).

Note that \(\gamma \) and \(\gamma '\) are linearly independent, since \(\mathfrak {I}(\gamma ')\subset \mathfrak {I}(V_1)\ne \mathfrak {I}(V)=\mathfrak {I}(\gamma )\). Thus, the geometric multiplicity of \(\lambda \) is not 1. Absurd! \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cariello, D. Sinkhorn–Knopp theorem for PPT states. Lett Math Phys 109, 2013–2034 (2019). https://doi.org/10.1007/s11005-019-01169-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-019-01169-9

Keywords

Mathematics Subject Classification

Navigation