Classification of screening systems for lattice vertex operator algebras

Abstract

We study and classify systems of certain screening operators arising in a generalized vertex operator algebra, or more generally an abelian intertwining algebra with an associated vertex operator (super)algebra. Screening pairs arising from weight one primary vectors acting commutatively on a lattice vertex operator algebra (the vacuum module) are classified into four general types; one type of which has been shown to play an important role in the construction and study of certain important families of \({\mathcal {W}}\)-vertex algebras. These types of screening pairs which we go on to study in detail through the notion of a system of screeners are lattice elements or “screening momenta” which give rise to screening pairs. We classify screening systems for all positive definite integral lattices of rank two, and for all positive definite even lattices of arbitrary rank when these lattices are generated by a screening system.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Abe, T.: A \({\mathbb{Z}}_2\)-orbifold model of the symplectic fermionic vertex operator superalgebra. Math. Z. 255, 755–792 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Adamović, D., Milas, A.: \(C_2\)-Cofinite \({\cal{W}}\)-algebras and their logarithmic representations. In: Conformal Field Theories, and Tensor Categories. Mathematical Lectures from Peking University, Springer, Heidelberg pp. 249–270 (2014)

  3. 3.

    Adamović, D., Milas, A.: The doublet vertex operator algebra \({\cal{A}}(p)\) and \({\cal{A}}_{2, p}\). In: Recent Developments in Algebraic and Combinatorial Aspects of Representation Theory, Contemporary Mathematics 602, American Mathematical Society, Providence, RI pp. 23–38 (2013)

  4. 4.

    Adamović, D.: Classification of irreducible modules of certain subalgebras of free boson vertex algebra. J. Algebra 270, 115–132 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Adamović, D., Milas, A.: Logarithmic intertwining operators and \({\cal{W}}(2,2p-1)\)-algebras. J. Math. Phys. 48, 073503 (2007)

    MathSciNet  Article  MATH  ADS  Google Scholar 

  6. 6.

    Adamović, D., Milas, A.: On the triplet vertex algebra \(W(p)\). Adv. Math. 217, 2664–2699 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Adamović, D., Milas, A.: Lattice construction of logarithmic modules for certain vertex algebras. Sel. Math. (N.S.) 15, 535–561 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Adamović, D., Milas, A.: The \(N=1\) triplet vertex operator superalgebras. Commun. Math. Phys. 288, 225–270 (2009)

    MathSciNet  Article  MATH  ADS  Google Scholar 

  9. 9.

    Adamović, D., Milas, A.: On \(W\)-algebras associated to \((2, p)\) minimal models and their representations. Int. Math. Res. Not. 20, 3896–3934 (2010)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Adamović, D., Milas, A.: The structure of Zhu’s algebras for certain \({{\cal{W}}}\)-algebras. Adv. Math. 227, 2425–2456 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Adamović, D., Milas, A.: On \(W\)-algebra extensions of \((2, p)\) minimal models: \(p > 3\). J. Algebra 344, 313–332 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Adamović, D., Milas, A.: An explicit realization of logarithmic modules for the vertex operator algebra \({\cal{W}}_{p, p^{\prime }}\). J. Math. Phys. 53, 16 (2012)

    MATH  MathSciNet  Article  Google Scholar 

  13. 13.

    Barron, K., Vander Werf, N., Yang, J.: Higher level Zhu algebras and modules for vertex operator algebras. J. Pure Appl. Algebra (to appear)

  14. 14.

    Barron, K., Vander Werf, N.: Classification of irreducible modules for the kernel of a screening operator for rank 2 lattice vertex operator algebras (in preparation)

  15. 15.

    Barron, K., Vander Werf, N.: On permutation-twisted free fermion vertex operator superalgebras and two conjectures, In: C. Burdik, O., Navratil, Posta, S. (eds.) Proceedings of the XXIst International Conference on Integrable Systems and Quantum Symmetries, June 2013, Prague, Czech Republic; J. Physics: Conference Series474, 012009 (2013)

  16. 16.

    Creutzig, T., Gaĭnutdinov, A., Runkel, I.: A quasi-Hopf algebra for the triple vertex operator algebras. arXiv:1712.072601v1

  17. 17.

    de Boer, J., Tjin, T.: Quantization and representation theory of finite \({\cal{W}}\)-algebras. Commun. Math. Phys. 158, 485516 (1993)

    MathSciNet  Google Scholar 

  18. 18.

    Dong, C., Lepowsky, J.: A generalization of vertex operator algebra. In: Haboush, W., Parshall, B. (eds.) Algebraic Groups and Generalizatons, Proceedings of 1991 American Mathematical Society Summer Research Institute. Proceedings of Symposia in Pure Mathematics, American Mathematical Society, Providence (1993)

  19. 19.

    Dong, C., Lepowsky, J.: Generalized vertex algebras and relative vertex operators. In: Progress in Mathematics, vol. 112. Birkhaüser, Boston (1993)

  20. 20.

    Dong, C.: Vertex algebras associated with even lattices. J. Algebra 161(1), 245–265 (1993). https://doi.org/10.1006/jabr.1993.1217

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Dong, C., Li, H., Mason, G.: Vertex operator algebras and associative algebras. J. Algebra 206, 67–96 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Dotesenko, V., Fateev, V.: Conformal algebra and multipoint correlation functions in two-dimensional statistical models. Nucl. Phys. B 240, 312 (1984)

    Article  ADS  Google Scholar 

  23. 23.

    Dotesenko, V., Fateev, V.: Four point correlation functions and the operator algebra in the two-dimensional conformal invariant theories with central charge \(c<1\). Nucl. Phys. B 251, 691 (1985)

    Article  ADS  Google Scholar 

  24. 24.

    Ebeling, W.: Lattices and Codes. Lecture Notes in Mathematics, 2nd edn. Friedr. Vieweg & Sohn, Braunschweig (2002)

    Google Scholar 

  25. 25.

    Eholzer, W., Flohr, M., Honecker, A., Hübel, R., Nahm, W., Varnhagen, R.: Representations of \({{\cal{W}}}\)-algebras with two generators and new rational models. Nucl. Phys. B 383, 249–288 (1992)

    MathSciNet  Article  ADS  Google Scholar 

  26. 26.

    Feigin, B., Tipunin, I. Yu.: Logarithmic CFTs connected with simple Lie algebras. arXiv:1002.5047

  27. 27.

    Feigin, B., Frenkel, E.: A family of representations of affine Lie algebras (Russian). Uspekhi Mat. Nauk 43, 227–228 (1988). translation in Russian Math. Surveys 43 (1988), 221–222

  28. 28.

    Feigin, B., Gaĭnutdinov, A., Semikhatov, A., Tipunin, I. Yu.: The Kazhdan-Lusztig correspondence for the representation category of the triplet \(W\)-algebra in logarithmic conformal field theories. Theoret. Math. Phys. 148, 1210–1235 (2006)

  29. 29.

    Feigin, B., Gaĭnutdinov, A., Semikhatov, A., Tipunin, I. Yu.: Logarithmic extensions of minimal models: characters and modular transformations. Nucl. Phys. B 757, 303–343 (2006)

  30. 30.

    Feigin, B., Gaĭnutdinov, A., Semikhatov, A., Tipunin, I. Yu.: Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center. Commun. Math. Phys. 265, 47–93 (2006)

  31. 31.

    Felder, G.: BRST approach to minimal models. Nucl. Phys. B 317, 215–236 (1989)

    MathSciNet  Article  ADS  Google Scholar 

  32. 32.

    Fjelstad, J., Fuchs, J., Hwang, S., Semikhatov, A., Tipunin, I. Yu.: Logarithmic conformal field theories via logarithmic deformations. Nucl. Phys. B 633, 379–413 (2002)

  33. 33.

    Flohr, M.: Bits and pieces in logarithmic conformal field theory. In: Proceedings of the School and Workshop on Logarithmic Conformal Field Theory and its Applications (Tehran, 2001). Int. J. Modern Phys. A 18, 4497–4591 (2003)

  34. 34.

    Flohr, M.: On modular invariant partition functions of conformal field theories with logarithmic operators. Int. J. Modern Phys. A 11, 4147–4172 (1996)

    MathSciNet  Article  MATH  ADS  Google Scholar 

  35. 35.

    Flohr, M., Gaberdiel, M.: Logarithmic torus amplitudes. J. Phys. A 39, 1955–1967 (2006)

    MathSciNet  Article  MATH  ADS  Google Scholar 

  36. 36.

    Frenkel, E., Ben-Zvi, D.: Vertex Algebras and Algebraic Curves. Mathematical Surveys and Monographs, 88. American Mathematical Society, Providence, RI (2001)

    Google Scholar 

  37. 37.

    Frenkel, I., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster. Pure and Applied Mathematics. Academic Press, Cambridge (1988)

    Google Scholar 

  38. 38.

    Fuchs, J., Hwang, S., Semikhatov, A., Tipunin, I. Yu.: Nonsemisimple fusion algebras and the Verlinde formula. Commun. Math. Phys. 247, 713–742 (2004)

  39. 39.

    Gaberdiel, M.: An algebraic approach to logarithmic conformal field theory. In: Proceedings of the School and Workshop on Logarithmic Conformal Field Theory and its Applications (Tehran, 2001). Int. J. Modern Phys. A 18, 4593–4638 (2003)

  40. 40.

    Gaberdiel, M., Kausch, H.: A rational logarithmic conformal field theory. Phys. Lett. B 386, 131–137 (1996)

    MathSciNet  Article  ADS  Google Scholar 

  41. 41.

    Gaberdiel, M., Kausch, H.: A local logarithmic conformal field theory. Nucl. Phys. B 538, 631–658 (1999)

    MathSciNet  Article  MATH  ADS  Google Scholar 

  42. 42.

    Gaberdiel, M., Runkel, I.: The logarithmic triplet theory with boundary. J. Phys. A 39, 14745–14780 (2006)

    MathSciNet  Article  MATH  ADS  Google Scholar 

  43. 43.

    Humphreys, J.: Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics, vol. 9. Springer, New York (1972)

    Google Scholar 

  44. 44.

    Kausch, H.: Extended conformal algebras generated by multiplet of primary fields. Phys. Lett. B 259, 448–455 (1991)

    MathSciNet  Article  ADS  Google Scholar 

  45. 45.

    Kausch, H.: Symplectic fermions. Nucl. Phys. B 583, 513–541 (2000)

    MathSciNet  Article  MATH  ADS  Google Scholar 

  46. 46.

    Kausch, H., Watts, G.: A study of \({{\cal{W}}}\)-algebras by using Jacobi identities. Nucl. Phys. B 354, 740–768 (1991)

    Article  ADS  Google Scholar 

  47. 47.

    Lentner, S.: Quantum groups and Nichols algebras acting on conformal field theories. arXiv:1702.06431v1

  48. 48.

    Lepowsky, J., Li, H.: Introduction to Vertex Operator Algebras and Their Representations. Progress in Mathematics, vol. 227. Birkhäuser, Boston (2003)

    Google Scholar 

  49. 49.

    Li, W.: Abelian intertwining algebras and modules related to rational lattices. J. Algebra 214, 356–384 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  50. 50.

    Mac Lane, S.: Coholmology theory of abelian groups. In: Proceedings of International Congress of Mathematicians, Vol. II, 8–14 (1950)

  51. 51.

    Miyamoto, M.: Modular invariance of vertex operator algebras satisfying \(C_2\)-cofiniteness. Duke Math. J. 122, 51–91 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  52. 52.

    Nagatomo, K., Tsuchiya, A.: The triplet vertex operator algebra \({\cal{W}}(p)\) and the restricted quantum group at root of unity. In: Exploring New Structures and Natural Constructions in Mathematical Physics. 149, Advanced Studies in Pure Mathematics, vol. 61, Mathematics Society Japan, Tokyo (2011)

  53. 53.

    Newman, M.: Integral Matrices. Academic Press, New York (1972)

    Google Scholar 

  54. 54.

    Tsuchiya, A., Wood, S.: The tensor structure on the representation category of the triplet algebra. J. Phys. A 46, 40 (2013)

    MathSciNet  MATH  Google Scholar 

  55. 55.

    Tsuchiya, A., Wood, S.: On the extended \(W\)-algebra of type \({\mathfrak{sl}}_2\) at positive rational level. Int. Math. Res. Not. 2015, 5357–5435 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  56. 56.

    Vander Werf, N.: Screening Operators for Lattice Vertex Operator Algebras and Resulting Constructions. University of Notre Dame, Notre Dame (2017)

    Google Scholar 

  57. 57.

    Wakimoto, M.: Fock representations of affine Lie algebra \(A^{(1)}_1\). Commun. Math. Phys. 104, 605–609 (1986)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  58. 58.

    Wang, W.: Nilpotent orbits and finite \(W\)-algebras. Fields Inst. Commun. 59, 71–105 (2011)

    MathSciNet  MATH  Google Scholar 

  59. 59.

    Xu, X.: Introduction to Vertex Operator Superalgebras and Their Modules, vol. 456. Kluwer Academic Publishers, Boston (1998)

    Google Scholar 

  60. 60.

    Zhu, Y.-C.: Modular invariance of characters of vertex operator algebras. J. Am. Math. Soc. 9, 237–302 (1996)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

This paper consists, essentially, of the first three chapters of the second author’s Ph.D. Thesis [56] under the supervision of the first author. The authors would like to thank Antun Milas, Drazan Adamovic, and Jinwei Yang for useful comments and guidance in the writing of the thesis from which this paper is derived. The authors thank the referee for pointing out significant points of clarification in the expository parts of the paper as well as some mathematical improvements. The first author is the recipient of Simons Foundation Collaboration Grant 282095, and greatly appreciates their support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Katrina Barron.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

K. Barron was supported by Simons Foundation Collaboration Grant 282095.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barron, K., Vander Werf, N. Classification of screening systems for lattice vertex operator algebras. Lett Math Phys 109, 1573–1610 (2019). https://doi.org/10.1007/s11005-019-01161-3

Download citation

Keywords

  • Vertex operator algebras
  • Conformal field theory
  • Screening operators

Mathematics Subject Classification

  • Primary 17B69
  • Secondary 81T40
  • 17B68
  • 17B22