Skip to main content
Log in

Covariance in the Batalin–Vilkovisky formalism and the Maurer–Cartan equation for curved Lie algebras

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We express covariance of the Batalin–Vilkovisky formalism in classical mechanics by means of the Maurer–Cartan equation in a curved Lie superalgebra, defined using the formal variational calculus and Sullivan’s Thom–Whitney construction. We use this framework to construct a Batalin–Vilkovisky canonical transformation identifying the Batalin–Vilkovisky formulation of the spinning particle with an AKSZ field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrov, M., Schwarz, A., Zaboronsky, O., Kontsevich, M.: The geometry of the master equation and topological quantum field theory. Int. J. Mod. Phys. A 12(7), 1405–1429 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Axelrod, S., Singer, I.M.: Chern–Simons perturbation theory. In: Proceedings of the XXth International Conference on Differential Geometric Methods in Theoretical Physics, vol. 1, 2, New York, 1991. World Sci. Publ., River Edge, NJ, pp. 3–45 (1992)

  3. Bousfield, A.K., Gugenheim, V.K.A.M.: On PL de Rham theory and rational homotopy type. Mem. Amer. Math. Soc. 8(179), 1 (1976)

    MathSciNet  MATH  Google Scholar 

  4. Cattaneo, A.S., Felder, G.: A path integral approach to the Kontsevich quantization formula. Commun. Math. Phys. 212(3), 591–611 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Cattaneo, A.S., Felder, G.: On the AKSZ formulation of the Poisson sigma model. Lett. Math. Phys. 56(2), 163–179 (2001). (EuroConférence Moshé Flato 2000, Part II (Dijon))

    Article  MathSciNet  MATH  Google Scholar 

  6. Cattaneo, A.S., Mnev, P., Reshetikhin, N.: Classical BV theories on manifolds with boundary. Commun. Math. Phys. 332(2), 535–603 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Cattaneo, A.S., Schiavina, M.: On time. Lett. Math. Phys. 107(2), 375–408 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Cattaneo, Alberto S., Schiavina, M., Selliah, I.: BV-equivalence between triadic gravity and BF theory in three dimensions. arXiv:1707.07764

  9. Getzler, E.: A Darboux theorem for Hamiltonian operators in the formal calculus of variations. Duke Math. J. 111(3), 535–560 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Getzler, E.: The Batalin–Vilkovisky cohomology of the spinning particle. J. High Energy Phys. 2016(6), 1–17 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Getzler, E.: The spinning particle with curved target. Commun. Math. Phys. 352(1), 185–199 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Getzler, E., Pohorence, S.: Covariance of the classical Brink–Schwarz superparticle (to appear)

  13. Kruskal, M.D., Miura, R.M., Gardner, C.S., Zablusky, N.J.: Korteweg–de Vries equation and generalizations. V. Uniqueness and nonexistence of polynomial conservation laws. J. Math. Phys. 11, 952–960 (1970)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Olver, P.J.: Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, vol. 107. Springer, New York (1986)

    Book  Google Scholar 

  15. Sullivan, D.: Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math. 47, 269–331 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tao, T.: Hilbert’s Fifth Problem and Related Topics, Graduate Studies in Mathematics, vol. 153. American Mathematical Society, Providence (2014)

    Book  Google Scholar 

  17. Whitney, H.: Geometric Integration Theory. Princeton University Press, Princeton (1957)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to Chris Hull for introducing me to the first-order formalism of the spinning particle, and to Si Li, Pavel Mnëv and Sean Pohorence for further insights. This research is partially supported by EPSRC Programme Grant EP/K034456/1 “New Geometric Structures from String Theory”, a Fellowship of the Simons Foundation, and Collaboration Grants #243025 and #524522 of the Simons Foundation. Parts of this paper were written while the author was visiting the Yau Mathematical Sciences Center at Tsinghua University and the Department of Mathematics of Columbia University, as a guest of Si Li and Mohammed Abouzaid, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezra Getzler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Getzler, E. Covariance in the Batalin–Vilkovisky formalism and the Maurer–Cartan equation for curved Lie algebras. Lett Math Phys 109, 187–224 (2019). https://doi.org/10.1007/s11005-018-1106-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-018-1106-8

Keywords

Mathematics Subject Classification

Navigation