Skip to main content
Log in

Solutions of convex Bethe Ansatz equations and the zeros of (basic) hypergeometric orthogonal polynomials

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Via the solutions of systems of algebraic equations of Bethe Ansatz type, we arrive at bounds for the zeros of orthogonal (basic) hypergeometric polynomials belonging to the Askey–Wilson, Wilson and continuous Hahn families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Whereas a classical result of Bochner characterizes the Jacobi polynomials as “the most general orthogonal family satisfying a linear homogeneous second-order differential equation”, the Askey–Wilson polynomials are known to constitute “the most general orthogonal family satisfying a linear homogeneous second-order q-difference equation” [29].

References

  1. Szegö, G.: Orthogonal Polynomials, vol. XXIII, 4th edn. Colloquium Publications, Providence (1975)

    MATH  Google Scholar 

  2. Gautschi, W.: Orthogonal Polynomials: Computation and Approximation, Numerical Mathematics and Scientific Computation. Oxford Science Publications, New York (2004)

    MATH  Google Scholar 

  3. Ahmed, S., Laforgia, A., Muldoon, M.E.: On the spacing of the zeros of some classical orthogonal polynomials. J. Lond. Math. Soc. (2) 25, 246–252 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Area, I., Dimitrov, D.K., Godoy, E., Rafaeli, F.R.: Inequalities for zeros of Jacobi polynomials via Obrechkoff’s theorem. Math. Comp. 81, 991–1004 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Area, I., Dimitrov, D.K., Godoy, E., Paschoa, V.: Zeros of classical orthogonal polynomials of a discrete variable. Math. Comp. 82, 1069–1095 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Driver, K., Jordaan, K.: Bounds for extreme zeros of some classical orthogonal polynomials. J. Approx. Theory 164, 1200–1204 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Elbert, A., Laforgia, A., Rodon, L.G.: On the zeros of Jacobi polynomials. Acta Math. Hungar. 64, 351–359 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Forrester, P.J., Rogers, J.B.: Electrostatics and the zeros of the classical polynomials. SIAM J. Math. Anal. 17, 461–468 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gatteschi, L.: New inequalities for the zeros of Jacobi polynomials. SIAM J. Math. Anal. 18, 1549–1562 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grünbaum, F.A.: Variations on a theme of Heine and Stieltjes: an electrostatic interpretation of the zeros of certain polynomials. J. Comput. Appl. Math. 99, 189–194 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ismail, M.E.H.: An electrostatics model for zeros of general orthogonal polynomials. Pac. J. Math. 193, 355–369 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jordaan, K., Tookos, F.: Convexity of the zeros of some orthogonal polynomials and related functions. J. Comput. Appl. Math. 233, 762–767 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Marcellán, F., Martínez-Finkelshtein, A., Martínez-González, P.: Electrostatic models for zeros of polynomials: old, new, and some open problems. J. Comput. Appl. Math. 207, 258–272 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Simanek, B.: An electrostatic interpretation of the zeros of paraorthogonal polynomials on the unit circle. SIAM J. Math. Anal. 48, 2250–2268 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Askey, R., Wilson, J.: Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Am. Math. Soc. 54(319), 55 (1985)

    MathSciNet  MATH  Google Scholar 

  16. Koekoek, R., Lesky, P.A., Swarttouw, R.: Hypergeometric Orthogonal Polynomials and Their q-Analogues, Springer Monographs in Mathematics. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  17. Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia of Mathematics and Its Applications, vol. 98. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  18. Muldoon, M.E.: Properties of zeros of orthogonal polynomials and related functions. J. Comput. Appl. Math. 48, 167–186 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Driver, K.: A note on the interlacing of zeros and orthogonality. J. Approx. Theory 161, 508–510 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gochhayat, P., Jordaan, K., Raghavendar, K., Swaminathan, A.: Interlacing properties and bounds for zeros of \({}_2\phi _1\) hypergeometric and little \(q\)-Jacobi polynomials. Ramanujan J. 40, 45–62 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Haneczok, M., Van Assche, W.: Interlacing properties of zeros of multiple orthogonal polynomials. J. Math. Anal. Appl. 389, 429–438 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Deaño, A., Huybrechs, D., Kuijlaars, A.B.J.: Asymptotic zero distribution of complex orthogonal polynomials associated with Gaussian quadrature. J. Approx. Theory 162, 2202–2224 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Simon, B.: Fine structure of the zeros of orthogonal polynomials: a progress report. In: Arvesú, J., Marcellán, F., Martínez-Finkelshtein, A. (eds.) Recent Trends in Orthogonal Polynomials and Approximation Theory, Contemp. Math., vol. 507, pp. 241–254. Amer. Math. Soc., Providence (2010)

    Chapter  Google Scholar 

  24. Chihara, L.: On the zeros of the Askey–Wilson polynomials, with applications to coding theory. SIAM J. Math. Anal. 18, 191–207 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bihun, O., Calogero, F.: Properties of the zeros of the polynomials belonging to the \(q\)-Askey scheme. J. Math. Anal. Appl. 433(1), 525–542 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. van Diejen, J.F.: On the equilibrium configuration of the \(BC\)-type Ruijsenaars–Schneider system. J. Nonlinear Math. Phys. 12(suppl. 1), 689–696 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Ismail, M.E.H., Lin, S.S., Roan, S.S.: Bethe Ansatz Equations of XXZ Model and q-Sturm-Liouville Problems. arXiv:math-ph/0407033 [math-ph]

  28. Odake, S., Sasaki, R.: Equilibrium positions, shape invariance and Askey–Wilson polynomials. J. Math. Phys. 46(6), 063513 (2005). 10 pp

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Grünbaum, F.A., Haine, L.: The \(q\)-version of a theorem of Bochner. J. Comput. Appl. Math. 68, 103–114 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. van Diejen, J.F., Emsiz, E.: Orthogonality of Bethe Ansatz eigenfunctions for the Laplacian on a hyperoctahedral Weyl alcove. Commun. Math. Phys. 350, 1017–1067 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. van Diejen, J.F., Emsiz, E., Zurrián, I.N.: Completeness of the Bethe Ansatz for an open \(q\)-boson system with integrable boundary interactions. Ann. Henri Poincaré 19, 1349–1384 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Li, B., Wang, Y.-S.: Exact solving \(q\) deformed boson model under open boundary condition. Modern Phys. Lett. B 26, 1150008 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Gaudin, M.: The Bethe Wavefunction. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  34. Korepin, V.E., Bogoliubov, N.M., Izergin, A.G.: Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  35. Mattis, D.C.: The Many-Body Problem: An Encyclopedia of Exactly Solved Models in One Dimension. World Scientific, Singapore (1994)

    MATH  Google Scholar 

  36. Yang, C.N., Yang, C.P.: Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction. J. Math. Phys. 10, 1115–1122 (1969)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Wilson, J.A.: Some hypergeometric orthogonal polynomials. SIAM J. Math. Anal. 11, 690–701 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  38. Askey, R., Wilson, J.: A set of hypergeometric orthogonal polynomials. SIAM J. Math. Anal. 13, 651–655 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  39. Takhtajan, L.A.: Integrable models in classical and quantum field theory. In: Ciesielski, Z., Olech, C. (eds.) Proceedings of the International Congress of Mathematicians, vols. 1, 2 (Warsaw, 1983), pp. 1331–1346. North-Holland Publishing Co., Amsterdam (1984)

  40. Kozlowski, K.K., Sklyanin, E.K.: Combinatorics of generalized Bethe equations. Lett. Math. Phys. 103, 1047–1077 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Dorlas, T.C.: Orthogonality and completeness of the Bethe Ansatz eigenstates of the nonlinear Schrödinger model. Commun. Math. Phys. 154, 347–376 (1993)

    Article  ADS  MATH  Google Scholar 

  42. Lieb, E.H., Liniger, W.: Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. (2) 130, 1605–1616 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Izergin, A.G., Korepin, V.E.: A lattice model connected with a nonlinear Schrödinger equation. Dokl. Akad. Nauk SSSR 259, 76–79 (1981). arXiv:0910.0295

    MathSciNet  MATH  Google Scholar 

  44. Bogoliubov, N.M., Bullough, R.K.: A q-deformed completely integrable Bose gas model. J. Phys. A 25, 4057–4071 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Bogoliubov, N.M., Izergin, A.G., Kitanine, A.N.: Correlation functions for a strongly correlated boson system. Nucl. Phys. B 516, 501–528 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. van Diejen, J.F.: Diagonalization of an integrable discretization of the repulsive delta Bose gas on the circle. Commun. Math. Phys. 267, 451–476 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Korff, C.: Cylindric versions of specialised Macdonald functions and a deformed Verlinde algebra. Commun. Math. Phys. 318, 173–246 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Tsilevich, N.V.: The quantum inverse scattering method for the \(q\)-boson model and symmetric functions. Funct. Anal. Appl. 40, 207–217 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic, London (1982)

    MATH  Google Scholar 

  50. Mukhin, E., Tarasov, V., Varchenko, A.: Bethe algebra of homogeneous XXX Heisenberg model has simple spectrum. Commun. Math. Phys. 288, 1–42 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Kozlowski, K.K.: On condensation properties of Bethe roots associated with the XXZ chain. Commun. Math. Phys. 357, 1009–1069 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Gaudin, M.: Boundary energy of a Bose gas in one dimension. Phys. Rev. A 4, 386–394 (1971)

    Article  ADS  Google Scholar 

  53. Sklyanin, E.K.: Boundary conditions for integrable quantum systems. J. Phys. A 21, 2375–2389 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Baseilhac, P.: The \(q\)-deformed analogue of the Onsager algebra: beyond the Bethe Ansatz approach. Nucl. Phys. B 754, 309–328 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Doikou, A., Fioravanti, D., Ravanini, F.: The generalized non-linear Schrödinger model on the interval. Nucl. Phys. B 790, 465–492 (2008)

    Article  ADS  MATH  Google Scholar 

  56. Alcaraz, F.C., Barber, M.N., Batchelor, M.T., Baxter, R.J., Quispel, G.R.W.: Surface exponents of the quantum XXZ, Ashkin–Teller and Potts models. J. Phys. A 20, 6397–6409 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  57. Belliard, S., Crampé, N., Ragoucy, E.: Algebraic Bethe Ansatz for open XXX model with triangular boundary matrices. Lett. Math. Phys. 103, 493–506 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Cao, J., Lin, H.-Q., Shi, K.-J., Wang, Y.: Exact solution of XXZ spin chain with unparallel boundary fields. Nucl. Phys. B 663, 487–519 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Frahm, H., Seel, A., Wirth, T.: Separation of variables in the open \(XXX\) chain. Nucl. Phys. B 802, 351–367 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Melo, C.S., Ribeiro, G.A.P., Martins, M.J.: Bethe Ansatz for the XXX-\(S\) chain with non-diagonal open boundaries. Nucl. Phys. B 711, 565–603 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Nepomechie, R.I.: Bethe Ansatz solution of the open XXZ chain with nondiagonal boundary terms. J. Phys. A 37, 433–440 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Bihun, O., Calogero, F.: Properties of the zeros of the polynomials belonging to the Askey scheme. Lett. Math. Phys. 104, 1571–1588 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Odake, S., Sasaki, R.: Equilibria of ‘discrete’ integrable systems and deformation of classical orthogonal polynomials. J. Phys. A 37, 11841–11876 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Sasaki, R., Yang, W.-L., Zhang, Y.-Z.: Bethe Ansatz solutions to quasi exactly solvable difference equations, SIGMA Symmetry Integrability Geom. Methods Appl. 5 (2009), Paper 104, 16 pp

  65. van Diejen, J.F.: Integrability of difference Calogero–Moser systems. J. Math. Phys. 35, 2983–3004 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. van Diejen, J.F.: Difference Calogero–Moser systems and finite Toda chains. J. Math. Phys. 36, 1299–1323 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Thanks are due to the referees for pointing out some improvements of the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. van Diejen.

Additional information

This work was supported in part by the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) Grants # 1170179 and # 1181046.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Diejen, J.F., Emsiz, E. Solutions of convex Bethe Ansatz equations and the zeros of (basic) hypergeometric orthogonal polynomials. Lett Math Phys 109, 89–112 (2019). https://doi.org/10.1007/s11005-018-1101-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-018-1101-0

Keywords

Mathematics Subject Classification

Navigation