Skip to main content
Log in

Differential characters and cohomology of the moduli of flat connections

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let \(\pi {:}\, P\rightarrow M\) be a principal bundle and p an invariant polynomial of degree r on the Lie algebra of the structure group. The theory of Chern–Simons differential characters is exploited to define a homology map \(\chi ^{k} {:}\, H_{2r-k-1}(M)\times H_{k}({\mathcal {F}}/{\mathcal {G}})\rightarrow {\mathbb {R}}/{\mathbb {Z}}\), for \(k<r-1\), where \({\mathcal {F}} /{\mathcal {G}}\) is the moduli space of flat connections of \(\pi \) under the action of a subgroup \({\mathcal {G}}\) of the gauge group. The differential characters of first order are related to the Dijkgraaf–Witten action for Chern–Simons theory. The second-order characters are interpreted geometrically as the holonomy of a connection in a line bundle over \({\mathcal {F}}/{\mathcal {G}}\). The relationship with other constructions in the literature is also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antieau, B., Williams, B.: The topological period-index problem over 6-complexes. J. Topol. 7, 617–640 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atiyah, M.F., Bott, R.: The Yang–Mills equations over Riemann surfaces. Philos. Trans. R. Soc. Lond. A 308, 523–615 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Atiyah, M.F., Singer, I.: Dirac operators coupled to vector potentials. Proc. Natl. Acad. Sci. USA 81, 2597–2600 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bär, C., Becker, C.: Differential Characters. Lecture Notes in Mathematics, vol. 2112. Springer, Berlin (2014)

  5. Berline, N., Vergne, M.: Classes caractéristiques équivariantes. Formules de localisation en cohomologie équivariante. C. R. Acad. Sci. Paris 295, 539–541 (1982)

    MathSciNet  MATH  Google Scholar 

  6. Berline, N., Vergne, M.: Zéros d’un champ de vecteurs et classes charact éristiques équivariantes. Duke Math. J. 50, 539–549 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  8. Biswas, I., Castrillón López, M.: Flat connections and cohomology invariants. Math. Nachr. 290(14–15), 2170–2184 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bott, R., Tu, L.: Equivariant Characteristic Classes in the Cartan Model, Geometry, Analysis and Applications (Varanasi, 2000), pp. 3–20. World Scientific Publishing, River Edge (2001)

    MATH  Google Scholar 

  10. Castrillón López, M., Muñoz Masqué, J.: The geometry of the bundle of connections. Math. Z. 236, 797–811 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chern, S.-S., Simons, J.: Characteristic forms and geometric invariants. Ann. Math. 99, 48–69 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheeger, J., Simons, J.: Differential characters and geometric invariants. In: Geometry and Topology, Proceedings of Special Year, College Park/MD 1983/84, Lecture Notes in Mathematics, vol. 1167. Springer, Berlin (1985)

  13. Dijkgraaf, R., Witten, E.: Topological gauge theories and group cohomology. Commun. Math. Phys. 129, 393–429 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Donaldson, S.K., Kronheimer, P.B.: The Geometry of Four-Manifolds. Oxford University Press, Oxford (1990)

    MATH  Google Scholar 

  15. Dupont, J.L., Kamber, F.: Gerbes, simplicial forms and invariants for families of foliated bundles. Comm. Math. Phys. 253, 253–282 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Ferreiro Pérez, R.: Equivariant characteristic forms in the bundle of connections. J. Geom. Phys. 54, 197–212 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Ferreiro Pérez, R.: Local cohomology and the variational bicomplex. Int. J. Geom. Methods Mod. Phys. 05, 587–604 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ferreiro Pérez, R.: Local anomalies and local equivariant cohomology. Commun. Math. Phys. 286, 445–458 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ferreiro Pérez, R.: Equivariant prequantization bundles on the space of connections and characteristic classes. Ann. Mat. Pura Appl. Preprint arXiv:1703.05832

  20. Freed, D.S.: Classical Chern–Simons theory, Part 2. Houst. J. Math. 28, 293–310 (2002)

    MATH  Google Scholar 

  21. Guillemin, V., Sternberg, S.: Supersymmetry and Equivariant de Rham Theory. Springer, London (1999)

    Book  MATH  Google Scholar 

  22. Iyer, J.N.N.: Cohomological invariants of a variation of flat connections. Lett. Math. Phys. 106, 131–146 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Krupka, D.: The contact ideal. Differ. Geom. Appl. 5, 257–276 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

M.C.L. was partially supported by MINECO (Spain) under Grant MTM2015–63612-P. R.F.P. was partially supported by “Proyecto de investigación Santander-UCM PR26/16-20305”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Castrillón López.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castrillón López, M., Ferreiro Pérez, R. Differential characters and cohomology of the moduli of flat connections. Lett Math Phys 109, 11–31 (2019). https://doi.org/10.1007/s11005-018-1095-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-018-1095-7

Keywords

Mathematics Subject Classification

Navigation