Advertisement

Letters in Mathematical Physics

, Volume 108, Issue 8, pp 1885–1904 | Cite as

A Pfaffian formula for the monomer–dimer model on surface graphs

Article

Abstract

We consider the monomer–dimer model on weighted graphs embedded in surfaces with boundary, with the restriction that only monomers located on the boundary are allowed. We give a Pfaffian formula for the corresponding partition function, which generalises the one obtained by Giuliani et al. (J Stat Phys 163(2):211–238, 2016) for graphs embedded in the disc. Our proof is based on an extension of a bijective method mentioned in Giuliani et al. (2016), together with the Pfaffian formula for the dimer partition function of Cimasoni–Reshetikhin (Commun Math Phys 275(1):187–208, 2007).

Keywords

Monomer–dimer model Partition function Surface graph Pfaffian 

Mathematics Subject Classification

Primary 82B20 Secondary 05C70 05C10 57M15 

Notes

Acknowledgements

This work was supported by a Grant of the Swiss National Science Foundation (SNSF). The author would like to thank his advisor David Cimasoni for helpful discussions. The author would also like to thank Hanoi National University of Education for supporting his work.

References

  1. 1.
    Austin, T., Bantilan, H., Egge, E.S., Jonas, I., Kory, P.: The Pfaffian transform. J. Integer Seq. 12(2), 3 (2009)MathSciNetMATHGoogle Scholar
  2. 2.
    Cimasoni, D.: Dimers on graphs in non-orientable surfaces. Lett. Math. Phys. 87(1–2), 149–179 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Cimasoni, D., Reshetikhin, N.: Dimers on surface graphs and spin structures. I. Commun. Math. Phys. 275(1), 187–208 (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cimasoni, D., Reshetikhin, N.: Dimers on surface graphs and spin structures. II. Commun. Math. Phys. 281(2), 445–468 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Fisher, M.E.: Statistical mechanics of dimers on a plane lattice. Phys. Rev. 124, 1664–1672 (1961)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Fowler, R.H., Rushbrooke, G.S.: An attempt to extend the statistical theory of perfect solutions. Trans. Faraday Soc. 33, 1272–1294 (1937)CrossRefGoogle Scholar
  7. 7.
    Galluccio, A., Loebl, M.: On the theory of pfaffian orientations. I. Perfect matchings and permanents. Electron. J. Comb. 6(1), R6 (1999)MathSciNetMATHGoogle Scholar
  8. 8.
    Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. WH Freeman, New York (2002)Google Scholar
  9. 9.
    Giuliani, A., Jauslin, I., Lieb, E.H.: A pfaffian formula for monomer-dimer partition functions. J. Stat. Phys. 163(2), 211–238 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Heilmann, O.J., Lieb, E.H.: Monomers and dimers. In: Nachtergaele, B., Solovej, J.P., Yngvason, J. (eds.) Statistical Mechanics, pp. 41–43. Springer, Berlin, Heidelberg (1970)Google Scholar
  11. 11.
    Heilmann, O.J., Lieb, E.H.: Theory of monomer-dimer systems. In: Nachtergaele, B., Solovej, J.P., Yngvason, J. (eds.) Statistical Mechanics, pp. 45–87. Springer, Berlin, Heidelberg (1972)Google Scholar
  12. 12.
    Ishikawa, M., Wakayama, M.: Applications of minor summation formula III, Plücker relations, lattice paths and Pfaffian identities. J. Comb. Theory Ser. A 113(1), 113–155 (2006)CrossRefMATHGoogle Scholar
  13. 13.
    Jerrum, M.: Two-dimensional monomer-dimer systems are computationally intractable. J. Stat. Phys. 48(1), 121–134 (1987)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Kasteleyn, P.W.: The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice. Physica 27(12), 1209–1225 (1961)ADSCrossRefMATHGoogle Scholar
  15. 15.
    Kasteleyn, P.W.: Dimer statistics and phase transitions. J. Math. Phys. 4(2), 287–293 (1963)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Priezzhev, V.B., Ruelle, P.: Boundary monomers in the dimer model. Phys. Rev. E 77(6), 061126 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Temperley, H.N.V.: Enumeration of graphs on a large periodic lattice. In: Combinatorics: Proceedings of the British Combinatorial Conference, pp. 155–159 (1973)Google Scholar
  18. 18.
    Tesler, G.: Matchings in graphs on non-orientable surfaces. J. Comb. Theory Ser. B 78(2), 198–231 (2000)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Wu, F.Y.: Pfaffian solution of a dimer-monomer problem: single monomer on the boundary. Phys. Rev. E 74(2), 020104 (2006)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Wu, F.Y., Tzeng, W.-J., Izmailian, N.S.: Exact solution of a monomer-dimer problem: a single boundary monomer on a nonbipartite lattice. Phys. Rev. E 83(1), 011106 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Section de MathématiquesUniversité de GenèveGeneveSwitzerland
  2. 2.Department of MathematicsHanoi National University of EducationHanoiVietnam

Personalised recommendations