Letters in Mathematical Physics

, Volume 108, Issue 5, pp 1225–1277 | Cite as

The FKMM-invariant in low dimension

  • Giuseppe De Nittis
  • Kiyonori Gomi


In this paper, we investigate the problem of the cohomological classification of “Quaternionic” vector bundles in low dimension (\(d\leqslant 3\)). We show that there exists a characteristic class \(\kappa \), called the FKMM-invariant, which takes value in the relative equivariant Borel cohomology and completely classifies “Quaternionic” vector bundles in low dimension. The main subject of the paper concerns a discussion about the surjectivity of \(\kappa \).


“Quaternionic” vector bundles FKMM-invariant Characteristic classes Topological quantum systems 

Mathematics Subject Classification

Primary 57R22 Secondary 53A55 55N25 53C80 



GD’s research is supported by the Grant Iniciación en Investigación 2015—No. 11150143 funded by FONDECYT. KG’s research is supported by the JSPS KAKENHI Grant No. 15K04871.


  1. 1.
    Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in quantum theory. Phys. Rev. 115, 485–491 (1959)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ando, Y., Fu, L.: Topological crystalline insulators and topological superconductors: from concepts to materials. Annu. Rev. Cond. Matter Phys. 6, 361–381 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Saunders College Publications, Philadelphia (1976)zbMATHGoogle Scholar
  4. 4.
    Allday, C., Puppe, V.: Cohomological Methods in Transformation Groups. Cambridge University Press, Cambridge (1993)CrossRefzbMATHGoogle Scholar
  5. 5.
    Atiyah, M.F.: \(K\)-theory and reality. Q. J. Math. Oxf. Ser. 2(17), 367–386 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Atiyah, M.F.: \(K\)-Theory. W. A. Benjamin, New York (1967)zbMATHGoogle Scholar
  7. 7.
    Baer, M.: Beyond Born–Oppenheimer: Electronic Nonadiabatic Coupling Terms and Conical Intersections. Wiley, Hoboken (2006)CrossRefzbMATHGoogle Scholar
  8. 8.
    Bourne, C., Carey, A.L., Rennie, A.: A noncommutative framework for topological insulators. Rev. Math. Phys. 28, 1650004 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bellissard, J., van Elst, A., Schulz-Baldes, H.: The non-commutative geometry of the quantum Hall effect. J. Math. Phys. 35, 5373–5451 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Böhm, A., Mostafazadeh, A., Koizumi, H., Niu, Q., Zwanziger, J.: The Geometric Phase in Quantum Systems. Springer, Berlin (2003)CrossRefzbMATHGoogle Scholar
  12. 12.
    Borel, A.: Seminar on transformation groups. In: Bredon, G., Floyd, E.E., Montgomery, D., Palais, R. (eds.) Annals of Mathematics Studies, vol. 46. Princeton University Press, Princeton (1960)Google Scholar
  13. 13.
    Bott, R., Tu, L.W.: Differential Forms in Algebraic Topology. Springer, Berlin (1982)CrossRefzbMATHGoogle Scholar
  14. 14.
    Carpentier, D., Delplace, P., Fruchart, M., Gawȩdzki, K.: Topological index for periodically driven time-reversal invariant 2D systems. Phys. Rev. Lett. 114, 106806 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Carpentier, D., Delplace, P., Fruchart, M., Gawȩdzki, K., Tauber, C.: Construction and properties of a topological index for periodically driven time-reversal invariant 2D crystals. Nucl. Phys. B 896, 779–834 (2015)ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Chruściński, D., Jamiołkowski, A.: Geometric Phases in Classical and Quantum Mechanics. Birkhäuser, Basel (2004)zbMATHGoogle Scholar
  17. 17.
    Carey, A., Phillips, J., Schulz-Baldes, H.: Spectral flow for real skew-adjoint Fredholm operators. J. Spec. Theory (2016) (to appear)Google Scholar
  18. 18.
    De Nittis, G., Gomi, K.: Classification of “Real” Bloch-bundles: topological quantum systems of type AI. J. Geom. Phys. 86, 303–338 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    De Nittis, G., Gomi, K.: Classification of “Quaternionic” Bloch-bundles: topological insulators of type AII. Commun. Math. Phys. 339, 1–55 (2015)ADSCrossRefzbMATHGoogle Scholar
  20. 20.
    De Nittis, G., Gomi, K.: Differential geometric invariants for time-reversal symmetric Bloch-bundles: the “Real” case. J. Math. Phys. 57, 053506 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    De Nittis, G., Gomi, K.: Chiral vector bundles: a geometric model for class AIII topological quantum systems. (2015). E-print arXiv:1504.04863
  22. 22.
    De Nittis, G., Gomi, K.: The cohomological nature of the Fu-Kane-Mele invariant. J. Geom. Phys. 124, 124–164 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Dirac, P.A.M.: Quantized singularities in the electromagnetic field. Proc. R. Soc. Lond. A. 133, 60–72 (1931)ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    Davis, J.F., Kirk, P.: Lecture Notes in Algebraic Topology. AMS, Providence (2001)CrossRefzbMATHGoogle Scholar
  25. 25.
    De Nittis, G., Lein, M.: Topological polarization in graphene-like systems. J. Phys. A 46, 385001 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    De Nittis, G., Schulz-Baldes, H.: Spectral flows of dilations of Fredholm operators. Can. Math. Bull. 58, 51–68 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Dos Santos, P.F., Lima-Filho, P.: Quaternionic algebraic cycles and reality. Trans. Am. Math. Soc. 356, 4701–4736 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Dupont, J.L.: Symplectic bundles and \(KR\)-theory. Math. Scand. 24, 27–30 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Edelson, A.L.: Real vector bundles and spaces with free involutions. Trans. Am. Math. Soc. 157, 179–188 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Fu, L., Kane, C.L., Mele, E.J.: Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    Freed, D.S., Moore, G.W.: Twisted equivariant matter. Ann. Henri Poincaré 14, 1927–2023 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Furuta, M., Kametani, Y., Matsue, H., Minami, N.: Stable-homotopy Seiberg–Witten invariants and Pin bordisms. UTMS Preprint Series 2000, UTMS 2000-46 (2000)Google Scholar
  33. 33.
    Fiorenza, D., Monaco, D., Panati, G.: \(\mathbb{Z}_2\) invariants of topological insulators as geometric obstructions. Commun. Math. Phys. 343, 1115–1157 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Gomi, K.: A variant of K-theory and topological T-duality for real circle bundles. Commun. Math. Phys. 334, 923–975 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Graf, G.M., Porta, M.: Bulk-edge correspondence for two-dimensional topological insulators. Commun. Math. Phys. 324, 851–895 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Gat, O., Robbins, J.M.: Topology of time-invariant energy bands with adiabatic structure. J. Phys. A Math. Theor. 50, 375203 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Grossmann, J., Schulz-Baldes, H.: Index pairings in presence of symmetries with applications to topological insulators. Commun. Math. Phys. 343, 477–513 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Hasan, M.Z., Kane, C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  40. 40.
    Hsiang, W.Y.: Cohomology Theory of Topological Transformation Groups. Springer, Berlin (1975)CrossRefzbMATHGoogle Scholar
  41. 41.
    Hausmann, J.-C., Holm, T., Puppe, V.: Conjugation spaces. Algebr. Geom. Topol. 5, 923964 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Husemoller, D.: Fibre Bundles. Springer, New York (1994)CrossRefzbMATHGoogle Scholar
  43. 43.
    Kahn, B.: Construction de classes de Chern équivariantes pour un fibré vectoriel Réel. Commun. Algebra 15, 695–711 (1987)zbMATHGoogle Scholar
  44. 44.
    Kellendonk, J.: On the \(C^*\)-algebraic approach to topological phases for insulators. Ann. Henri Poincaré 18, 2251–2300 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Kennedy, R., Guggenheim, C.: \(\mathbb{Z}_2\) topological order and the quantum spin Hall effect. Phys. Rev. B 91, 245148 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    Kane, C.L., Mele, E.J.: \(\mathbb{Z}_2\) topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005)ADSCrossRefGoogle Scholar
  47. 47.
    Kitaev, A.: Periodic table for topological insulators and superconductors. AIP Conf. Proc. 1134, 22–30 (2009)ADSCrossRefzbMATHGoogle Scholar
  48. 48.
    Kono, A., Tamaki, D.: Generalized Cohomology. AMS, Providence (2002)zbMATHGoogle Scholar
  49. 49.
    Kubota, Y.: Controlled topological phases and bulk-edge correspondence. Commun. Math. Phys. 349, 493–525 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Kuchment, P.: Floquet Theory for Partial Differential Equations. Birkhäuser, Boston (1993)CrossRefzbMATHGoogle Scholar
  51. 51.
    Kennedy, R., Zirnbauer, M.R.: \(\mathbb{Z}_2\) topological order and the quantum spin Hall effect. Commun. Math. Phys. 342, 909–963 (2016)ADSCrossRefGoogle Scholar
  52. 52.
    Lawson Jr., H.B., Lima-Filho, P., Michelsohn, M.-L.: Algebraic cycles and the classical groups. Part II: quaternionic cycles. Geom. Topol. 9, 1187–1220 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Matumoto, T.: On \(G\)-CW complexes and a theorem of J. H. C. Whitehead. J. Fac. Sci. Univ. Tokyo 18, 363–374 (1971)MathSciNetzbMATHGoogle Scholar
  54. 54.
    May, J.P.: Equivariant Homotopy and Cohomology Theory. CBMS Regional Conference Series in Mathematics, vol. 91. American Mathematical Society, Providence (1996)zbMATHGoogle Scholar
  55. 55.
    Monaco, D,; Cornean, H.; Teufel, S.: Wannier functions and \(\mathbb{Z}_2\) invariants in time-reversal symmetric topological insulators. Rev. Math. Phys. 29, 1730001 (2016).Google Scholar
  56. 56.
    Milnor, J., Stasheff, J.D.: Characteristic Classes. Princeton University Press, Princeton (1974)zbMATHGoogle Scholar
  57. 57.
    Pancharatnam, S.: Generalized theory of interference, and its applications. Part I. Coherent pencils. Proc. Indian Acad. Sci. A 44, 247–262 (1956)MathSciNetGoogle Scholar
  58. 58.
    Peterson, F.P.: Some remarks on Chern classes. Ann. Math. 69, 414–420 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Prodan, E., Schulz-Baldes, H.: Generalized Connes–Chern characters in \(KK\)-theory with an application to weak invariants of topological insulators. Rev. Math. Phys. 28, 1650024 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Serre, J.-P.: Faisceaux algebriques coherents. Ann. Math. 61, 197–278 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Swan, R.-G.: Vector bundles and projective modules. Trans. Am. Math. Soc. 105, 264–277 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Thiang, G.C.: On the \(K\)-theoretic classification of topological phases of matter. Ann. Henri Poincaré 17, 757–794 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Thouless, D.J., Kohmoto, M., Nightingale, M.P., den Nijs, M.: Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982)ADSCrossRefGoogle Scholar
  64. 64.
    Thiang, G.C., Sato, K., Gomi, K.: Fu–Kane–Mele monopoles in semimetals. Nucl. Phys. B 923, 107–125 (2017)ADSCrossRefzbMATHGoogle Scholar
  65. 65.
    Yang, C.N.: Magnetic monopoles, fiber bundles, and gauge fields. In: Newman, H.B., Ypsilantis, T. (eds.) History of Original Ideas and Basic Discoveries in Particle Physics. NATO ASI Series (Series B: Physics), vol. 352, pp. 55–65. Springer, Boston MA (1996)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Facultad de Matemáticas and Instituto de FísicaPontificia Universidad CatólicaSantiagoChile
  2. 2.Department of Mathematical SciencesShinshu UniversityNaganoJapan

Personalised recommendations