Advertisement

Letters in Mathematical Physics

, Volume 106, Issue 1, pp 131–146 | Cite as

Cohomological Invariants of a Variation of Flat Connections

  • Jaya N. N. Iyer
Article

Abstract

In this paper, we apply the theory of Chern–Cheeger–Simons to construct canonical invariants associated to an r-simplex whose points parametrize flat connections on a smooth manifold X. These invariants lie in degrees (2pr − 1)-cohomology with \({\mathbb{C}/\mathbb{Z}}\)-coefficients, for p > r ≥ 1. This corresponds to a homomorphism on the higher homology groups of the moduli space of flat connections, and taking values in \({\mathbb{C}/\mathbb{Z}}\)-cohomology of the underlying smooth manifold X.

Keywords

variation of flat connections differential cohomology canonical invariants 

Mathematics Subject Classification

53C55 53C07 53C29 53.50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bär, C., Becker, C.: Differential Characters and Geometric Chains. In: Differential Characters. Lecture Notes in Math., vol. 2112, pp. 1–90. Springer, Berlin (2014)Google Scholar
  2. 2.
    Cheeger, J., Simons, J.: Differential characters and geometric invariants, Geometry and topology (College Park, Md., 1983/84), 50–80, Lecture Notes in Math., vol. 1167. Springer, Berlin (1985)Google Scholar
  3. 3.
    Chern, S.S., Simons, J.: Characteristic forms and geometric invariants. Ann Math Second Ser 99(1) (1974)Google Scholar
  4. 4.
    Freed D.S.: Classical Chern–Simons theory. II. Special issue for S. S. Chern. Houston J. Math. 28(2), 293–310 (2002)MATHMathSciNetGoogle Scholar
  5. 5.
    Griffiths, P., Harris, J.: Principles in Algebraic Geometry, pp. xiv–813. Reprint of the 1978 original. Wiley Classics Library. Wiley, New York (1994)Google Scholar
  6. 6.
    Hopkins M.J., Singer I.M.: Quadratic functions in geometry, topology, and M-theory. J. Differ. Geom. 70(3), 329–452 (2005)MATHMathSciNetGoogle Scholar
  7. 7.
    Iyer, J.N., Simpson, C.T.: Regulators of canonical extensions are torsion; the smooth divisor case. (2007). Preprint, arXiv:math.AG/07070372
  8. 8.
    Karoubi M.: Théorie générale des classes caractéristiques secondaires. K Theory t. 4, 55–87 (1990)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Narasimhan, M.S., Ramanan, S.: Existence of universal connections, I, II. Am. J. Math. 83, 563–572 (1961) (85, 223–231; 1963)Google Scholar
  10. 10.
    Noohi B.: Fundamental groups of algebraic stacks. J. Inst. Math. Jussieu 3(1), 69–103 (2004)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Reznikov, A.: All regulators of flat bundles are torsion. Ann. Math. (2) 141(2), 373–386 (1995)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.The Institute of Mathematical Sciences, CIT CampusTaramani, ChennaiIndia

Personalised recommendations