Skip to main content
Log in

On Twisted N = 2 5D Super Yang–Mills Theory

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

On a five-dimensional simply connected Sasaki–Einstein manifold, one can construct Yang–Mills theories coupled to matter with at least two supersymmetries. The partition function of these theories localises on the contact instantons, however, the contact instanton equations are not elliptic. It turns out that these equations can be embedded into the Haydys–Witten equations (which are elliptic) in the same way the 4D anti-self-dual instanton equations are embedded in the Vafa–Witten equations. We show that under some favourable circumstances, the latter equations will reduce to the former by proving some vanishing theorems. It was also known that the Haydys–Witten equations on product manifolds \({M_5 = M_4 \times \mathbb{R}}\) arise in the context of twisting the 5D maximally supersymmetric Yang–Mills theory. In this paper, we present the construction of twisted N = 2 Yang–Mills theory on Sasaki–Einstein manifolds, and more generally on K-contact manifolds. The localisation locus of this new theory thus provides a covariant version of the Haydys–Witten equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pestun, V. : Localization of gauge theory on a four-sphere and supersymmetric Wilson loops. Commun. Math. Phys. 313, 71–129 (2012). arXiv:0712.2824 [hep-th]

  2. Källén, J., Zabzine, M.: Twisted supersymmetric 5D Yang-Mills theory and contact geometry. JHEP 1205, 125 (2012). arXiv:1202.1956 [hep-th]

  3. Nekrasov, N.: Five dimensional gauge theories and relativistic integrable systems. Nucl. Phys. B 531, 323–344 (1998). arXiv:hep-th/9609219 [hep-th]

  4. Baulieu, L., Losev, A., Nekrasov, N.: Chern-Simons and twisted supersymmetry in various dimensions. Nucl. Phys. B 522, 82–104 (1998). arXiv:hep-th/9707174 [hep-th]

  5. Harland, D., Nolle, C.: Instantons and killing spinors. JHEP 1203, 082 (2012). arXiv:1109.3552 [hep-th]

  6. Corrigan E., Devchand C., Fairlie D.B., Nuyts J.: First order equations for gauge fields in spaces of dimension greater than four. Nucl. Phys. B 214, 452 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  7. Fan H.: Half de Rham complexes and line fields on odd-dimensional manifolds. Trans. Am. Math. Soc. 348, 2947–2982 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Källén, J., Qiu, J., Zabzine, M.: The perturbative partition function of supersymmetric 5D Yang-Mills theory with matter on the five-sphere. JHEP 1208, 157 (2012). arXiv:1206.6008 [hep-th]

  9. Qiu, J., Zabzine, M.: 5D Super Yang-Mills on Y p,q Sasaki-Einstein manifolds. arXiv:1307.3149

  10. Qiu, J., Zabzine, M.: Factorization of 5D super Yang-Mills on Y p,q spaces. Phys. Rev. D 89, 065040 (2014). arXiv:1403.2945 [hep-th]

  11. Qiu, J., Tizzano, L., Winding, J., Zabzine, M.: Gluing Nekrasov partition functions. arXiv:1403.2945 [hep-th]

  12. Kim, H.-C., Kim, S.: M5-branes from gauge theories on the 5-sphere. JHEP 1305, 144 (2013). arXiv:1206.6339 [hep-th]

  13. Lockhart, G., Vafa, C.: Superconformal partition functions and non-perturbative topological strings. arXiv:1210.5909 [hep-th]

  14. Kim, H.-C., Kim, J., Kim, S.: Instantons on the 5-sphere and M5-branes. arXiv:1211.0144 [hep-th]

  15. BWolf, M.: Contact manifolds, contact instantons, and twistor geometry. JHEP 1207, 074 (2012). arXiv:1401.5140 [math.DG]

  16. Baraglia, D., Hekmati, P.: Moduli spaces of contact instantons. arXiv:1401.5140 [math.DG]

  17. Pan, Y.: Note on a cohomological theory of contact-instanton and invariants of contact structures. arXiv:1401.5733 [hep-th]

  18. Pan, Y.: 5d Higgs branch localization, seiberg-witten equations and contact geometry. arXiv:1406.5236 [hep-th]

  19. Taubes, C.H.: The Seiberg-Witten equations and the Weinstein conjecture. (2006, ArXiv Mathematics e-prints). arXiv:math/0611007

  20. Anderson, L.: Five-dimensional topologically twisted maximally supersymmetric Yang-Mills theory. JHEP. 1302, 131 (2013). arXiv:1212.5019 [hep-th]

  21. Witten, E.: Monopoles and four-manifolds. Math. Res. Lett 1(6):769–796 (1994). doi:10.4310/MRL.1994.v1.n6.a13

  22. Taubes, C.H.: The Seiberg-Witten invariants and symplectic forms. Math. Res. Lett. (1), 809822 (1994)

  23. Witten, E.: Fivebranes and knots. arXiv:1101.3216 [hep-th]

  24. Haydys, A.: Fukaya-Seidel category and gauge theory. (2010, ArXiv e-prints). arXiv:1010.2353 [math.SG]

  25. Cherkis, S.A.: Octonions, monopoles, and knots. arXiv:1403.6836 [hep-th]

  26. Hosomichi, K., Seong, R.-K., Terashima, S.: Supersymmetric gauge theories on the five-sphere. Nucl. Phys. B 865, 376–396 (2012). arXiv:1203.0371 [hep-th]

  27. Pan, Y.: Rigid Supersymmetry on 5-dimensional riemannian manifolds and contact geometry. arXiv:1308.1567 [hep-th]

  28. Vafa, C., Witten, E.: A strong coupling test of S duality. Nucl. Phys. B 431, 842–77 (1994). arXiv:hep-th/9408074 [hep-th]

  29. Martelli, D., Sparks, J., Yau, S.-T.: The Geometric dual of a-maximisation for Toric Sasaki-Einstein manifolds. Commun. Math. Phys. 268, 39–65 (2006). arXiv:hep-th/0503183 [hep-th]

  30. Schmude, J.: Localisation on Sasaki-Einstein manifolds from holomophic functions on the cone. arXiv:1401.3266 [hep-th]

  31. Berkovits, N.: A ten-dimensional superYang-Mills action with off-shell supersymmetry. Phys. Lett. B 318, 104–106 (1993). arXiv:hep-th/9308128 [hep-th]

  32. Alvarez-Gaume, L.: A note on the atiyah-singer index theorem. J. Phys. A Math. Gen. 16(18), 4177 (1983). http://stacks.iop.org/0305-4470/16/i=18/a=018

  33. Alvarez-Gaume, L.: Supersymmetry and the atiyah-singer index theorem. Commun. Math. Phys. 90(2), 161–173 (1983). http://projecteuclid.org/euclid.cmp/1103940278

  34. Blair, D.E.: Riemannian geometry of contact and symplectic manifolds, vol. 203 of Progress in Mathematics, 2nd edn. Birkhäuser Boston, Inc., Boston. (2010). doi:10.1007/978-0-8176-4959-3

  35. Boyer, C.P., Galicki, K.: Sasakian geometry. Oxford mathematical monographs. Oxford University Press, Oxford (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Zabzine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, J., Zabzine, M. On Twisted N = 2 5D Super Yang–Mills Theory. Lett Math Phys 106, 1–27 (2016). https://doi.org/10.1007/s11005-015-0804-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-015-0804-8

Mathematics Subject Classification

Keywords

Navigation