Skip to main content
Log in

Noncommutative Inverse Scattering Method for the Kontsevich System

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We formulate an analog of Inverse Scattering Method for integrable systems on noncommutative associative algebras. In particular, we define Hamilton flows, Casimir elements and noncommutative analog of the Lax matrix. The noncommutative Lax element generates infinite family of commuting Hamilton flows on an associative algebra. The proposed approach to integrable systems on associative algebras satisfies certain universal property, in particular, it incorporates both classical and quantum integrable systems as well as provides a basis for further generalization. We motivate our definition by explicit construction of noncommutative analog of Lax matrix for a system of differential equations on associative algebra recently proposed by Kontsevich. First, we present these equations in the Hamilton form by defining a bracket of Loday type on the group algebra of the free group with two generators. To make the definition more constructive, we utilize (with certain generalizations) the Van den Bergh approach to Loday brackets via double Poisson brackets. We show that there exists an infinite family of commuting flows generated by the noncommutative Lax element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Crawley-Boevey W.: Poisson structures on moduli spaces of representations. J. Algebra 325(1), 205–215 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Vanden Bergh M.: Double Poisson algebras. Trans. Am. Math. Soc. 360, 5711–5769 (2008)

    Article  MathSciNet  Google Scholar 

  3. Ya Dorfman I., Fokas A.S.: Hamiltonian theory over noncommutative rings and integrability in multidimensions. J. Math. Phys. 33(7), 2504–2514 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Etingof, P., Gelfand, I., Retakh, V.: Factorization of differential operators, quasideterminants, and nonabelian Toda field equations. Math. Res. Lett. 4, 413–425 (1997)

  5. Etingof P., Gelfand I., Retakh V.: Nonabelian integrable systems, Quasideterminants, and Marchenko lemma. Math. Res. Lett. 5, 1–12 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Efimovskaya O., Wolf T.: On Integrability of the Kontsevich Non-Abelian ODE system. Lett. Math. Phys. 100(2), 161–170 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Farkas D.R., Letzter G.: Ring theory from symplectic geometry. J. Pure Appl. Algebra 125(1–3), 155–190 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fokas, A.S.: Symmetries and integrability. Technical report, DTIC Document (1987)

  9. Fadeev, L.D., Takhtajan, L.A.: Hamiltonian methods in the theory of solitons. Springer (1986)

  10. Gelfand I.M., Ya Dorfman I.: Hamiltonian operators and infinite-dimensional Lie algebras. Funk. An. Priloz 15(3), 23–40 (1981)

    Google Scholar 

  11. Gelfand, I.M., Smirnov, M.M.: The algebra of Chern-Simons classes, the poisson bracket on it, and the action of the gauge group. In: Lie Theory and geometry, volume 123 of Progress in Mathematics, pp. 261–288. Birkhauser, Boston (1994)

  12. Hamanaka M., Toda K.: Towards noncommutative integrable systems. Phys. Lett. A 316(1), 77–83 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Kontsevich, M.: Formal (non)-commutative symplectic geometry. In: Israel, M., Gelfand, Corwin, L., Lepowsky, J. (eds.) The gelfand mathematical seminars, 1990–1992, pp. 173–187. Birkhauser, Boston (1993)

  14. Kontsevich, M:. Noncommutative identities. (2011). arXiv:1109.2469

  15. Krichever, I.M.: The periodic non-abelian Toda chain and its two-dimensional generalization. Russ. Math. Surv 36(2), 82–89 (1981)

  16. Kosmann-Schwarzbach, Y.: From Poisson algebras to Gerstenhaber algebras. In: Annales de l’institut Fourier, vol. 46, pp. 1243–1274. Institut Fourier (1996)

  17. Loday J.-L.: Cyclic homology. Springer (1998)

  18. Mikhailov A.V., Sokolov V.V.: Integrable ODEs on associative algebras. Commun. Math. Phys. 211(1), 231–251 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Mikhailov, A. V., Shabat, A. B., Yamilov, R. I.: The symmetry approach to the classification of non-linear equations. complete lists of integrable systems. Russ. Math. Surv. 42(4), 1–63 (1987)

  20. Odesskii A.V., Rubtsov V.N., Sokolov V.V.: Bi-Hamiltonian ordinary differential equations with matrix variables. Theor. Math. Phys. 171(1), 442–447 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Odesskii, A., Rubtsov, V., Sokolov, V.: Poisson brackets on free associative algebras. Contemp. Math. 592, 295 (2013)

  22. Olver P.J., Sokolov V.V.: Integrable evolution equations on associative algebras. Commun. Mathe. Phys. 193(2), 245–268 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Pichereau A., Van de Weyer G.: Double Poisson cohomology of path algebras of quivers. J. Algebra 319(5), 2166–2208 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Retakh, V., Rubtsov, V.: Noncommutative Toda chains, Hankel quasideterminants and the Painlevé II equation. J. Phys. A Math. Theor. 43(50), 505204 (2010)

  25. Sokolov V.V., Shabat A.B.: Classification of integrable evolution equations. Math. Phys. Rev. 4, 221–280 (1984)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semeon Arthamonov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arthamonov, S. Noncommutative Inverse Scattering Method for the Kontsevich System. Lett Math Phys 105, 1223–1251 (2015). https://doi.org/10.1007/s11005-015-0779-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-015-0779-5

Mathematics Subject Classification

Keywords

Navigation