Letters in Mathematical Physics

, Volume 104, Issue 9, pp 1137–1145 | Cite as

Twisted Quantum Toroidal Algebras \({T_q^-(\mathfrak g)}\)

  • Naihuan Jing
  • Rongjia Liu


We construct a principally graded quantum loop algebra for the Kac–Moody algebra. As a special case a twisted analog of the quantum toroidal algebra is obtained together with the quantum Serre relations.

Mathematics Subject Classification (2010)

Primary 17B65 Secondary 17B67 17B69 


quantum algebras toroidal algebras vertex operators Serre relations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Feigin B., Jimbo M., Miwa T., Mukhin E.: Quantum continuous \({\mathfrak{gl}_\infty}\): Semi-infinite construction of representations. Kyoto J. Math. 51, 337–364 (2011)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Feigin B., Jimbo M., Miwa T., Mukhin E.: Quantum toroidal \({\mathfrak{gl}_1}\)-algebra: plane partitions. Kyoto J. Math. 52(3), 621–659 (2012)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Feigin B., Jimbo M., Miwa T., Mukhin E.: Representations of quantum toroidal \({\mathfrak{gl}_n}\). J. Algebra 380, 78–108 (2013)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Frenkel, I.B.: Representation of Kac–Moody algebras and dual resonance models. In: Applications of group theory in physics and mathematical physics, Chicago, 1982. Lecture Notes in Applied Mathematics, pp. 325–353. American Mathematical Society, Providence (1985)Google Scholar
  5. 5.
    Frenkel I.B., Jing N.: Vertex representations of quantum affine algebras. Proc. Natl. Acad. Sci. USA 85, 9373–9377 (1988)ADSCrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Frenkel I.B., Jing N., Wang W.: Quantum vertex representations via finite groups and the Mckay correspondence. Commun. Math. Phys. 211, 365–393 (2000)ADSCrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Frenkel I.B., Lepowsky J., Meurman A.: Vertex operator algebras and the Monster. Academic Press, San Diego (1988)MATHGoogle Scholar
  8. 8.
    Gao Y., Jing N.: \({U_{q}(\widehat{gl}_{N})}\) action on \({\widehat{gl}_{N}}\)-modules and quantum toroidal algebras. J. Algebra 273, 320–343 (2004)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Gao Y., Jing N.: A quantized Tits–Kantor–Koecher algebra. Algebra Represent. Theory 13, 207–217 (2010)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Ginzburg V., Kapranov M., Vasserot E.: Langlands reciprocity for algebraic surfaces. Math. Res. Lett. 2, 147–160 (1995)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Hernandez D.: Representations of quantum affinizations and fusion product. Transform. Groups 10, 163–200 (2005)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Hernandez D.: Quantum toroidal algebras and their representations. Selecta Math. (N.S.) 14, 701–725 (2009)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Jing N.: Twisted vertex representations of quantum affine algebras. Invent. Math. 102, 663–690 (1990)ADSCrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Jing N.: Quantum Kac–Moody algebras and vertex representations. Lett. Math. Phys. 44, 261–271 (1998)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Jing, N.: New twisted quantum current algebras. In: Wang, J., Lin, Z. (eds.) Representations and quantizations, pp. 263–274. Higher Ed. Press, Beijing (2000)Google Scholar
  16. 16.
    Jing N., Liu R.: A twisted quantum toroidal algebra. Front. Math. China 5, 1117–1128 (2013)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Lepowsky J., Wilson R.L.: Construction of the affine Lie algebra \({A^{(1)}_1}\). Commun. Math. Phys. 62, 43–53 (1978)ADSCrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Miki K.: Representations of quantum toroidal algebra \({U_q(sl_{n+1,tor}) (n\geq 2)}\). J. Math. Phys. 41, 7079–7098 (2000)ADSCrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Moody R.V., Rao S.E., Yokonuma T.: Toroidal Lie algebras and vertex representations. Geom. Dedicata 35, 283–307 (1990)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Nakajima, H.: Geometric construction of representations of affine algebras. In: Proceedings of the ICM, vol. I, pp. 423–438. Higher Ed. Press, Beijing (2002)Google Scholar
  21. 21.
    Saito Y.: Quantum toroidal algebras and their vertex representations. Publ. RIMS Kyoto Univ. 34, 155–177 (1998)CrossRefMATHGoogle Scholar
  22. 22.
    Saito Y., Takemura K., Uglov D.: Toroidal actions on level-1 modules of \({U_{q}(\widehat{sl_{n}})}\). Transform. Groups 3, 75–102 (1998)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Takemura K., Uglov D.: Representations of the quantum toroidal algebra on highest weight modules of the quantum affine algebra of type \({gl_{N}}\). Publ. RIMS Kyoto Univ. 35, 407–450 (1999)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Varagnolo M., Vasserot E.: Schur duality in the toroidal setting. Commun. Math. Phys. 182, 469–484 (1996)ADSCrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of MathematicsNorth Carolina State UniversityRaleighUSA
  2. 2.School of SciencesSouth China University of TechnologyGuangzhouChina

Personalised recommendations