Advertisement

Letters in Mathematical Physics

, Volume 104, Issue 9, pp 1079–1094 | Cite as

Approximations of Quantum-Graph Vertex Couplings by Singularly Scaled Rank-One Operators

  • Pavel Exner
  • Stepan S. Manko
Article

Abstract

We investigate approximations of the vertex coupling on a star-shaped graph by families of operators with singularly scaled rank-one interactions. We find a family of vertex couplings, generalizing the δ′-interaction on the line, and show that with a suitable choice of the parameters they can be approximated in this way in the norm-resolvent sense. We also analyze spectral properties of the involved operators and demonstrate the convergence of the corresponding on-shell scattering matrices.

Mathematics Subject Classification (2010)

81Q35 81Q10 

Keywords

quantum graph vertex coupling approximation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H.: Solvable Models in Quantum Mechanics, 2nd ed. AMS Chelsea Publishing, Providence (2005)MATHGoogle Scholar
  2. 2.
    Albeverio S., Kurasov P.: Singular Perturbations of Differential Operators. Solvable Schrödinger Type Operators. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  3. 3.
    Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs. Amer. Math. Soc., Providence (2013)Google Scholar
  4. 4.
    Exner P.: Weakly coupled states on branching graphs. Lett. Math. Phys. 38, 313–320 (1996)ADSCrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Exner P.: Contact interactions on graph superlattices. J. Phys. A Math. Gen. 29, 87–102 (1996)ADSCrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Exner P., Manko S.S.: Approximations of quantum-graph vertex couplings by singularly scaled potentials. J. Phys. A Math. Theor. 46, 345202 (2013)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Exner P., Post O.: A general approximation of quantum graph vertex couplings by scaled Schrödinger operators on thin branched manifolds. Commun. Math. Phys. 322, 207–227 (2013)ADSCrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Kostrykin V., Schrader R.: Kirchhoff’s rule for quantum wires. J. Phys. A Math. Gen. 32, 595–630 (1999)ADSCrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Kostrykin V., Schrader R.: Laplacians on metric graphs: eigenvalues, resolvents and semigroups. Contemp. Math. 415, 201–225 (2006)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Reed M., Simon B.: Methods of Modern Mathematical Physics. IV Analysis of Operators. Academic Press, New York (1978)MATHGoogle Scholar
  11. 11.
    Šeba P.: Some remarks on the δ′-interaction in one dimension. Rep. Math. Phys. 24, 111–120 (1986)ADSCrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Schmidt A., Cheng B., da Luz M.: Green function approach for general quantum graphs. J. Phys. A: Math. Gen. 36, L545–L551 (2003)ADSCrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Doppler Institute for Mathematical Physics and Applied MathematicsCzech Technical University in PraguePragueCzechia
  2. 2.Nuclear Physics Institute ASCRŘež near PragueCzechia
  3. 3.Department of Physics, Faculty of Nuclear Science and Physical EngineeringCzech Technical University in PragueDěčínCzechia

Personalised recommendations