Skip to main content
Log in

A Family of Monotone Quantum Relative Entropies

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study here the elementary properties of the relative entropy \({\mathcal{H}_\varphi(A, B) = {\rm Tr}[\varphi(A) - \varphi(B) - \varphi'(B)(A - B)]}\) for φ a convex function and A, B bounded self-adjoint operators. In particular, we prove that this relative entropy is monotone if and only if φ′ is operator monotone. We use this to appropriately define \({\mathcal{H}_\varphi(A, B)}\) in infinite dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ando T., Petz D.: Gaussian Markov triplets approached by block matrices. Acta Sci. Math.(Szeged) 75, 265–281 (2009)

    MathSciNet  Google Scholar 

  2. Audenaert K., Hiai F., Petz D.: Strongly subadditive functions. Acta Mathematica Hungarica 128, 386–394 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bach, V., Lieb, E.H., Solovej, J.P.: Generalized Hartree-Fock theory and the Hubbard model. J. Stat. Phys. 76, 3–89 (1994)

    Google Scholar 

  4. Bhatia R.: Matrix Analysis, vol. 169. Springer, Berlin (1997)

    Book  Google Scholar 

  5. Carlen, E.: Trace inequalities and quantum entropy: an introductory course. In: Sims, R. Ueltschi, D. (eds.) Entropy and the Quantum, vol. 529 of Contemporary Mathematics, American Mathematical Society, 2010, pp. 73–140. Arizona School of Analysis with Applications, March 16–20, 2009, University of Arizona

  6. Davis C.: A Schwarz inequality for convex operator functions. Proc. Am. Math. Soc. 8, 42–44 (1957)

    Article  MATH  Google Scholar 

  7. Frank R.L., Hainzl C., Seiringer R., Solovej J.P.: Microscopic derivation of Ginzburg-Landau theory. J. Am. Math. Soc. 25, 667–713 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hainzl C., Lewin M., Seiringer R.: A nonlinear model for relativistic electrons at positive temperature. Rev. Math. Phys. 20, 1283–1307 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hainzl C., Lewin M., Solovej J.P.: The thermodynamic limit of quantum Coulomb systems. Part II. Applications. Adv. Math. 221, 488–546 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hansen, F., Pedersen, G.K.: Jensen’s inequality for operators and Löwner’s theorem. Math. Ann. 258, 229–241 (1981/82)

    Google Scholar 

  11. Lewin, M., Sabin, J.: The Hartree equation for infinitely many particles. I. Well-posedness theory. Commun. Math. Phys. (2014) (in press)

  12. Lieb E.H., Ruskai M.B.: A fundamental property of quantum-mechanical entropy. Phys. Rev. Lett. 30, 434–436 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  13. Lieb, E.H., Ruskai, M.B.: Proof of the strong subadditivity of quantum-mechanical entropy, J. Math. Phys. 14, 1938–1941 (1973) (with an appendix by B. Simon)

    Google Scholar 

  14. Ohya M., Petz D.: Quantum Entropy and its Use. Texts and Monographs in Physics. Springer, Berlin (1993)

    Book  Google Scholar 

  15. Robinson D., Ruelle D.: Mean entropy of states in classical statistical mechanics. Commun. Math. Phys. 5, 288–300 (1967)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Ruelle, D.: Statistical Mechanics. Rigorous Results. World Scientific/Imperial College Press, Singapore/London (1999)

  17. Wehrl A.: General properties of entropy. Rev. Modern Phys. 50, 221–260 (1978)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Lewin.

Additional information

© 2014 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewin, M., Sabin, J. A Family of Monotone Quantum Relative Entropies. Lett Math Phys 104, 691–705 (2014). https://doi.org/10.1007/s11005-014-0689-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-014-0689-y

Mathematics Subject Classification (2010)

Keywords

Navigation