Letters in Mathematical Physics

, Volume 104, Issue 3, pp 341–360 | Cite as

Vector Hyperbolic Equations on the Sphere Possessing Integrable Third-Order Symmetries

  • Anatoly Meshkov
  • Vladimir Sokolov


The complete lists of vector hyperbolic equations on the sphere that have integrable third-order vector isotropic and anisotropic symmetries are presented. Several new integrable hyperbolic vector models are found. By their integrability, we mean the existence of vector Bäcklund transformations depending on a parameter. For all new equations, such transformations are constructed.

Mathematics Subject Classification (2010)

37K10 37K35 35Q53 


higher symmetry exact integrability hyperbolic equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sokolov V.V., Shabat A.B.: Classification of integrable evolution equations. Sov. Sci. Rev. Sect. C. 4, 221–280 (1984)MATHMathSciNetGoogle Scholar
  2. 2.
    Mikhailov A.V., Shabat A.B., Yamilov R.I.: The symmetry approach to the classification of non-linear equations. Complete lists of integrable systems. Russ. Math. Surv. 42(4), 1–63 (1987)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Mikhailov A.V., Sokolov V.V., Shabat A.B.: The symmetry approach to classification of integrable equations. In: Zakharov, V.E. (eds) What is Integrability? Springer Series in Nonlinear Dynamics, pp. 115–184. Springer, Berlin (1991)Google Scholar
  4. 4.
    Mikhailov A.V., Sokolov V.V.: Symmetries of differential equations and the problem of integrability. In: Mikhailov, A.V. (eds) Integrability Lecture. Notes in Physics, vol. 767, pp. 19–88. Springer, Berlin (2009)Google Scholar
  5. 5.
    Svinolupov S.I., Sokolov V.V.: Evolution equations with nontrivial conservation laws. Funct. Anal. Appl. 16(4), 86–87 (1982) (in Russian)MathSciNetGoogle Scholar
  6. 6.
    Svinolupov, S.I., Sokolov, V.V.: On conservation laws for equations having a non-trivial Lie-Bäcklund algebra. In: Shabat, A.B. (ed.) Integrable Systems, pp. 53–67. BFAN SSSR, Ufa (1982) (in Russian)Google Scholar
  7. 7.
    Meshkov A.G., Sokolov V.V.: Integrable evolution equations with the constant separant. Ufa Math. J. 4(3), 104–154 (2012) (in Russian)Google Scholar
  8. 8.
    Zhiber A.V., Shabat A.B.: Klein–Gordon equations with a nontrivial group. Sov. Phys. Dokl. 247(5), 1103–1107 (1979)MathSciNetGoogle Scholar
  9. 9.
    Zhiber A.V., Shabat A.B.: Systems of equations u x = p(u, v), v yq(u, v) possessing symmetries. Sov. Math. Dokl. 30, 23–26 (1984)MATHGoogle Scholar
  10. 10.
    Zhiber A.V., Sokolov V.V.: Exactly integrable hyperbolic equations of Liouville type. Russ. Math. Surv. 56(1), 63–106 (2001)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Meshkov A.G., Sokolov V.V.: Hyperbolic equations with third-order symmetries. Theor. Math. Phys. 166(1), 43–57 (2011)CrossRefMATHGoogle Scholar
  12. 12.
    Meshkov A.G., Sokolov V.V.: Integrable evolution equations on the N-dimensional sphere. Commun. Math. Phys. 232, 1–18 (2002)ADSCrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Balakhnev, M.Ju., Meshkov, A.G.: Integrable anisotropic evolution equations on a sphere. SIGMA 1, paper 027, 11 (2005).
  14. 14.
    Ibragimov N.Kh., Shabat A.B.: Infinite Lie-Bäcklund algebras. Funct. Anal. Appl. 14(4), 79–80 (1980) (in Russian)MATHMathSciNetGoogle Scholar
  15. 15.
    Golubchik I.Z., Sokolov V.V.: Multicomponent generalization of the hierarchy of the Landau-Lifshitz equation. Theor. Math. Phys. 124(1), 909–971 (2000)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Meshkov A.G., Sokolov V.V.: Classification of integrable divergent N-component evolution systems. Theor. Math. Phys. 139(2), 609–622 (2004)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Balakhnev M.Ju.: A class of integrable evolutionary vector equations. Theor. Math. Phys. 142(1), 8–14 (2005)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Balakhnev M.Ju., Meshkov A.G.: On a classification of integrable vectorial evolutionary equations. J. Nonlinear Math. Phys. 15(2), 212–226 (2008)ADSCrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Borisov A.B., Zykov S.A.: The dressing chain of discrete symmetries and proliferation of nonlinear equations. Theor. Math. Phys. 115(2), 530–541 (1998)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Zakharov V.E., Manakov S.V., Novikov C.P., Pitaevsky L.P.: Theory of Solitons: Inverse Problem Method. Nauka, Moscow (1980)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Orel State UniversityOrelRussia
  2. 2.Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations