Letters in Mathematical Physics

, Volume 103, Issue 7, pp 765–775 | Cite as

Quantum Random Walk Approximation on Locally Compact Quantum Groups

  • J. Martin Lindsay
  • Adam G. Skalski
Open Access


A natural scheme is established for the approximation of quantum Lévy processes on locally compact quantum groups by quantum random walks. We work in the somewhat broader context of discrete approximations of completely positive quantum stochastic convolution cocycles on C*-bialgebras.

Mathematics Subject Classification (2000)

Primary 46L53 81S25 Secondary 22A30 47L25 16W30 


quantum random walk quantum Lévy process noncommutative probability locally compact quantum group C*-bialgebra stochastic cocycle 


  1. 1.
    Applebaum, D., Bhat, B.V.R., Kustermans, J., Lindsay, J.M.: Quantum independent increment processes. In: Franz, U., Schürmann, M. (eds.) From Classical Probability to Quantum Stochastics, vol. I. Lecture Notes in Mathematics, vol. 1865, Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Attal S., Pautrat Y.: From repeated to continuous quantum interactions. Ann. Henri Poincaré 7(1), 59–104 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Barndorff-Nielsen, O.E., Franz, U., Gohm, R., Kümmerer, B., Thorbjørnsen, S.: Quantum independent increment processes. In: Franz, U., Schürmann, M. (eds.) Structure of Quantum Lévy Processes, Classical Probability and Physics, vol. II. Lecture Notes in Mathematics, vol. 1866, Springer, Heidelberg (2006)Google Scholar
  4. 4.
    Bédos E., Tuset L.: Amenability and co-amenability for locally compact quantum groups. Int. J. Math. 14, 865–884 (2003)MATHCrossRefGoogle Scholar
  5. 5.
    Belton, A.C.R.: Approximation via toy Fock space—the vacuum-adapted viewpoint. In: Quantum Stochastics and Information, pp. 3–22. World Scientific, Singapore (2008)Google Scholar
  6. 6.
    Belton A.C.R.: Random-walk approximation to vacuum cocycles. J. Lond. Math. Soc. (2) 81, 412–434 (2010)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Biane Ph.: Quantum random walk on the dual of SU(n). Probab. Theory Relat. Fields 89(1), 117–129 (1991)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Bouten, L., van Handel, R.: Discrete approximation of quantum stochastic models. J. Math. Phys. 49(10), 102109 (2008)Google Scholar
  9. 9.
    Effros E.G., Ruan Z.-J.: Operator Spaces. OUP, Oxford (2000)MATHGoogle Scholar
  10. 10.
    Franz, U., Gohm, R.: Random walks on finite quantum groups. In: [3]Google Scholar
  11. 11.
    Franz U., Skalski A.G.: Approximation of quantum Lévy processes by quantum random walks. Proc. Indian Acad. Sci. (Math. Sci.) 118(2), 281–288 (2008)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Goswami D., Sahu L.: Quantum random walks and vanishing of the second Hochschild cohomology. Lett. Math. Phys. 84(1), 1–14 (2008)MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    Kustermans J.: Locally compact quantum groups in the universal setting. Int. J. Math. 12(3), 289–338 (2001)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Lance E.C.: Hilbert C*-Modules, a Toolkit for Operator Algebraists. LMS Lecture Note Series, vol. 210. CUP, Cambridge (1995)CrossRefGoogle Scholar
  15. 15.
    Lindsay, J.M.: Quantum stochastic analysis—an introduction. In: [1]Google Scholar
  16. 16.
    Lindsay J.M., Parthasarathy K.R.: The passage from random walk to diffusion in quantum probability II. Sankhyā Ser. A 50(2), 151–170 (1988)MathSciNetMATHGoogle Scholar
  17. 17.
    Lindsay J.M., Skalski A.G.: Quantum stochastic convolution cocycles. Ann. Inst. Henri Poincaré (B) 41(3), 581–604 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    Lindsay J.M., Skalski A.G.: Quantum stochastic convolution cocycles II. Commun. Math. Phys. 280(3), 575–610 (2008)MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    Lindsay J.M., Skalski A.G.: Quantum stochastic convolution cocycles III. Math. Ann. 352(1), 39–67 (2012)MathSciNetGoogle Scholar
  20. 20.
    Lindsay J.M., Wills S.J.: Existence of Feller cocycles on a C*-algebra. Bull. Lond. Math. Soc. 33, 613–621 (2001)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Majid S.: Foundations of Quantum Group Theory. CUP, Cambridge (1995)MATHCrossRefGoogle Scholar
  22. 22.
    Neshveyev S., Tuset L.: The Martin boundary of a discrete quantum group. J. Reine Angew. Math. 568, 23–70 (2004)MathSciNetMATHGoogle Scholar
  23. 23.
    Parthasarathy K.R.: An Introduction to Quantum Stochastic Calculus. Birkhäuser, Basel (1992)MATHCrossRefGoogle Scholar
  24. 24.
    Sahu L.: Quantum random walks and their convergence to Evans–Hudson flows. Proc. Indian Acad. Sci. Math. Sci. 118(3), 443–465 (2008)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Schürmann M.: White Noise on Bialgebras. Lecture Notes in Mathematics, vol. 1544. Springer, Heidelberg (1993)Google Scholar
  26. 26.
    Skalski A.G.: Completely positive quantum stochastic convolution cocycles and their dilations. Math. Proc. Camb. Philos. Soc. 143(1), 201–219 (2007)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsLancaster UniversityLancasterUK
  2. 2.Institute of Mathematics of the Polish Academy of SciencesWarsawPoland

Personalised recommendations