Letters in Mathematical Physics

, Volume 103, Issue 5, pp 533–557 | Cite as

Givental Graphs and Inversion Symmetry



Inversion symmetry is a very non-trivial discrete symmetry of Frobenius manifolds. It was obtained by Dubrovin from one of the elementary Schlesinger transformations of a special ODE associated to a Frobenius manifold. In this paper, we review the Givental group action on Frobenius manifolds in terms of Feynman graphs and obtain an interpretation of the inversion symmetry in terms of the action of the Givental group. We also consider the implication of this interpretation of the inversion symmetry for the Schlesinger transformations and for the Hamiltonians of the associated principle hierarchy.

Mathematics Subject Classification (2010)

53D45 37K10 


Frobenius manifolds Givental group action inversion transformation Feynman graphs principal hierachies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buryak A., Shadrin S.: A remark on deformations of Hurwitz Frobenius manifolds. Lett. Math. Phys. 93(3), 243–252 (2010)MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Buryak, A., Posthuma, H., Shadrin, S.: A polynomial bracket for the Dubrovin–Zhang hierarchies, arXiv:1009.5351Google Scholar
  3. 3.
    Buryak, A., Posthuma, H., Shadrin, S.: On deformations of quasi-Miura transformations and the Dubrovin-Zhang bracket, arXiv:1104.2722Google Scholar
  4. 4.
    Chen Y., Kontsevich M., Schwarz A.: Symmetries of WDVV equations. Nucl. Phys. B 730(3), 352–363 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Dubrovin, B.: Integrable systems and classification of 2-dimensional topological field theories, Integrable systems (Luminy, 1991), pp. 313–359. In: Progr. Math. vol. 115. Birkhäuser Boston, Boston (1993)Google Scholar
  6. 6.
    Dubrovin B.: Geometry of 2D topological field theories. Springer LNM 1620, 120–348 (1996)MathSciNetGoogle Scholar
  7. 7.
    Dubrovin B., Zhang Y.: Bi-Hamiltonian hierarchies in 2D TFT at one loop approximation. Commun. Math. Phys. 198(2), 311–361 (1998)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Dubrovin, B., Zhang, Y.: Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants, a new 2005 version of arXiv:math/ 0108160v1, 295 ppGoogle Scholar
  9. 9.
    Faber, C., Shadrin, S., Zvonkine, D.: Tautological relations and the r-spin Witten conjecture, arXiv:math/0612510Google Scholar
  10. 10.
    Feigin E., Leur J., Shadrin S.: Givental symmetries of Frobenius manifolds and multi-component KP tau-functions. Adv. Math. 224(3), 1031–1056 (2010)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    van de Givental A.: Gromov–Witten invariants and quantization of quadratic hamiltonians. Mosc. Math. J. 1(4), 551–568 (2001)MathSciNetMATHGoogle Scholar
  12. 12.
    Givental, A.: Semisimple Frobenius structures at higher genus. IMRN 23, 1265–1286 (2001)Google Scholar
  13. 13.
    Givental, A.: Symplectic geometry of Frobenius structures, In: Frobenius manifolds, pp. 91–112. Aspects Math., E36, Vieweg, Wiesbaden (2004)Google Scholar
  14. 14.
    Hertling C.: Frobenius manifolds and moduli spaces for singularities. Cambridge Tracts in Mathematics, vol. 151. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  15. 15.
    Kazarian, M.: Deformations of cohomological field theories (2007, preprint)Google Scholar
  16. 16.
    Lee, Y.-P.: Witten’s conjecture, Virasoro conjecture, and invariance of tautological equations, arXiv:math/0311100Google Scholar
  17. 17.
    Lee Y.-P.: Invariance of tautological equations I: conjectures and applications. J. Eur. Math. Soc. (JEMS) 10(2), 399–413 (2008)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Lee Y.-P.: Invariance of tautological equations II: Gromov–Witten theory (with Appendix A by Y. Iwao and Y.-P. Lee). J. Am. Math. Soc. 22(2), 331–352 (2009)MATHCrossRefGoogle Scholar
  19. 19.
    van de Leur, J.: Twisted GLn loop group orbit and solutions of the WDVV equations. Int. Math. Res. Notices 11, 551–573 (2001)Google Scholar
  20. 20.
    Liu S.-Q., Xu D., Zhang Y.: The Inversion Symmetry of the WDVV Equations and Tau Functions. Phys. D: Nonlinear Phenomenon 241(23–24), 2168–2177 (2012)MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    Losev A., Polyubin I.: On compatibility of tensor products on solutions to commutativity and WDVV equations. JETP Lett. 73(2), 53–58 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    Losev A., Polyubin I.: Commutativity equations and dressing transformations. JETP Lett. 77(2), 53–57 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    Manin, Yu.I.: Frobenius manifolds, quantum cohomology, and moduli spaces. AMS Colloquium Publications, vol. 47 (1999)Google Scholar
  24. 24.
    Peskin M.E., Schroeder D.V.: An Introduction to Quantum Field Theory. Addison-Wesley, Boston (1995)Google Scholar
  25. 25.
    Shadrin S.: BCOV theory via Givental group action on cohomological field theories. Mosc. Math. J. 9(2), 411–429 (2009)MathSciNetMATHGoogle Scholar
  26. 26.
    Shadrin, S., Zvonkine, D.: A group action on Losev-Manin cohomological field theories arXiv:0909.0800v1Google Scholar
  27. 27.
    Teleman C.: The structure of 2D semi-simple field theories. Invent. Math. 188(3), 525–588 (2012)MathSciNetADSMATHCrossRefGoogle Scholar
  28. 28.
    Witten E.: Two dimensional gravity and intersection theory on moduli space. Surv. Diff. Geom. 1, 243–310 (1991)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Petr Dunin-Barkowski
    • 1
    • 2
  • Sergey Shadrin
    • 1
  • Loek Spitz
    • 1
  1. 1.Korteweg-de Vries Institute for MathematicsUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.ITEPMoscowRussia

Personalised recommendations