Letters in Mathematical Physics

, Volume 101, Issue 2, pp 223–237 | Cite as

A Vanishing Theorem for Operators in Fock Space

  • David Hasler
  • Ira Herbst


We consider the bosonic Fock space over the Hilbert space of transversal vector fields in three dimensions. This space carries a canonical representation of the group of rotations. For a certain class of operators in Fock space, we show that rotation invariance implies the absence of terms which either create or annihilate only a single particle. We outline an application of this result in an operator theoretic renormalization analysis of Hamilton operators, which occur in non-relativistic qed.

Mathematics Subject Classification

81T16 81T17 


non-relativistic quantum electrodynamics Fock space operator theoretic renormalization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bach V., Fröhlich J., Sigal I.M.: Renormalization group analysis of spectral problems in quantum field theory. Adv. Math. 137, 205–298 (1998)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bach V., Chen T., Fröhlich J., Sigal I.M.: Smooth Feshbach map and operator-theoretic renormalization group methods. J. Funct. Anal. 203, 44–92 (2003)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Griesemer M., Hasler D.: On the smooth Feshbach–Schur Map. J. Funct. Anal. 254, 2329–2335 (2008)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Hiroshima F.: Self-adjointness of the Pauli–Fierz Hamiltonian for arbitrary values of coupling constants. Ann. Henri Poincaré 3, 171–201 (2002)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Hasler D., Herbst I.: On the self-adjointness and domain of Pauli-Fierz type Hamiltonians. Rev. Math. Phys. 20, 787–800 (2008)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Hasler D., Herbst I.: Ground states in the spin boson model. Ann. Henri Poincaré 12(4), 621–677 (2011)MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Hasler D., Herbst I.: Convergent expansions in non-relativistic QED: analyticity of the ground state. J. Funct. Anal. 261(11), 3119–3154 (2011)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Hasler D., Herbst I.: Smoothness and analyticity of perturbation expansions in QED. Adv. Math. 228(6), 3249–3299 (2011)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of MunichMunichGermany
  2. 2.Department of MathematicsUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations