Letters in Mathematical Physics

, Volume 101, Issue 2, pp 143–156 | Cite as

On One Integrable System With a Cubic First Integral

  • Alexander Vladimirovich Vershilov
  • Andrey Vladimirovich Tsiganov


Recently, Valent studied one integrable model with a cubic first integral of motion using a special coordinate system. We describe the bi-Hamiltonian structures and variables of separation for this system.

Mathematics Subject Classification

70H20 70H06 37K10 


integrable systems bi-Hamiltonian geometry trigonal curve 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Braden H.W., Enolski V.Z.: On the tetrahedrally symmetric monopole. Commun. Math. Phys. 299, 255–282 (2010)MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Braden, H., Enolskii, V.Z., Fedorov, Yu.N.: Dynamics on strata of a trigonal Jacobians in some integrable problems of rigid body, talk on “Finite Dimensional Integrable Systems in Geometry and Mathematical Physics”, 26–29 July, Jena, Germany (2011)Google Scholar
  3. 3.
    Buchstaber V.M., Enolskii V.Z., Leykin D.V.: Uniformization of Jacobi varieties of trigonal curves and nonlinear equations. Funct. Anal. Appl. 34, 159–171 (2000)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Eilbeck, J.C., Enolski, V.Z., Matsutani, S., Ônishi, Y., Previato, E.: Abelian functions for trigonal curves of genus three. International Mathematics Research Notices, vol. 2007, rnm 140, p. 38 (2007)Google Scholar
  5. 5.
    Falqui G., Pedroni M.: Separation of variables for bi-Hamiltonian systems. Math. Phys. Anal. Geom. 6, 139–179 (2003)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Grigoryev Yu.A., Tsiganov A.V.: Separation of variables for the generalized Henon-Heiles system and system with quartic potential. J. Phys. A Math. Theor. 44, 255202 (2011)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Jacobi C.G.J.: Vorlesungen über dynamik. G. Reimer, Berlin (1884)Google Scholar
  8. 8.
    Ibort A., Magri F., Marmo G.: Bihamiltonian structures and Stäckel separability. J. Geom. Phys. 33, 210–228 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Kiyohara K.: Two-dimensional geodesic flows having first integrals of higher degree. Math. Ann. 320, 487–505 (2001)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Selivanova E.N.: New examples of integrable conservative systems on S 2 and the case of Goryachev–Chaplygin. Commun. Math. Phys. 207, 641–663 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Tsiganov A.V.: Duality between integrable Stäckel systems. J. Phys. A Math. Gen. 32, 7965–7982 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    Tsiganov A.V.: The Maupertuis principle and canonical transformations of the extended phase space. J. Nonlinear Math. Phys. 8, 157–182 (2001)MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    Tsiganov A.V.: On bi-integrable natural hamiltonian systems on Riemannian manifolds. J. Nonlinear Math. Phys. 18(2), 245–268 (2011)MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    Tsiganov A.V.: On natural Poisson bivectors on the sphere. J. Phys. A Math. Theor. 44, 105203 (2011)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Valent G.: On a class of integrable systems with a cubic first integral. Commun. Math. Phys. 299, 631–649 (2010)MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    Vanhaecke P.: Integrable systems and moduli spaces of rank two vector bundles on a non-hyperelliptic genus 3 curve. Annales de l’institut Fourier 55, 1789–1802 (2005)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Vershilov A.V., Tsiganov A.V.: On bi-Hamiltonian geometry of some integrable systems on the sphere with cubic integral of motion. J. Phys. A Math. Theor. 42, 105203 (2009)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Weierstrass, K.: Mathematische Werke I, vol. 1 (1894)Google Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  • Alexander Vladimirovich Vershilov
    • 1
  • Andrey Vladimirovich Tsiganov
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations