Letters in Mathematical Physics

, Volume 102, Issue 3, pp 297–321 | Cite as

Realizations of Affine Weyl Group Symmetries on the Quantum Painlevé Equations by Fractional Calculus

  • Hajime Nagoya


We realize affine Weyl group symmetries on the Schrödinger equations for the quantum Painlevé equations, by fractional calculus. This realization enables us to construct an infinite number of hypergeometric solutions to the Schrödinger equations for the quantum Painlevé equations. In other words, since the Schrödinger equations for the quantum Painlevé equations are equivalent to the Knizhnik–Zamolodchikov equations, we give one method of constructing hypergeometric solutions to the Knizhnik–Zamolodchikov equations.

Mathematics Subject Classification

17B80 33C70 34M55 81R12 81T40 


affine Weyl groups quantum Painlevé equations Knizhnik–Zamolodchikov equations hypergeometric integrals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nagoya H.: Hypergeometric solutions to Schrödinger equations for the quantum Painlevé equations. J. Math. Phys. 52(8), 083509 (2011)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Nagoya, H.: A quantization of the sixth Painlevé equation, noncommutativity and singularities. In: Adv. Stud. Pure Math., vol. 55, pp. 291–298. Math. Soc. Japan, Tokyo (2009)Google Scholar
  3. 3.
    Zamolodchikov A.B., Fateev V.A.: Operator algebra and correlation functions in the two-dimensional SU(2) × SU(2) chiral Wess–Zumino model. Sov. J. Nucl. Phys. 43(4), 1031–1044 (1986)Google Scholar
  4. 4.
    Teschner J.: Operator product expansion and factorization in the \({H_3^+}\) -WZNW model. Nucl. Phys. B 571(3), 555–582 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Giribet G.E.: Note on \({\mathbb{Z}_2}\) symmetries of the Knizhnik–Zamolodchikov equation. J. Math. Phys. 48(1), 012304 (2007)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Awata, H., Fuji, H., Kanno, H., Manabe, M., Yamada, Y.: Localization with a surface operator, irregular conformal blocks and open topological string. arXiv:1008.0574Google Scholar
  7. 7.
    Schechtman V.V., Varchenko A.N.: Arrangements of hyperplanes and Lie algebra homology. Invent. Math. 106, 139–194 (1991)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Nagoya H.: Quantum Painlevé systems of type \({A_l^{(1)}}\). Int. J. Math. 15, 1007–1031 (2004)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Nagoya H., Grammaticos B., Ramani A.: Quantum Painlevé equations: from continuous to discrete and back. Regul. Chaotic Dyn. 13(5), 417–423 (2008)MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Jimbo M., Nagoya H., Sun J.: Remarks on the confluent KZ equation for \({\mathfrak{sl}_2}\) and quantum Painlevé equations. J. Phys. A: Math. Theor. 41(17), 175205 (2008)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Nagoya H.: Quantum Painlevé systems of type \({A_{n-1}^{(1)}}\) with higher degree Lax operators. Int. J. Math. 18(7), 839–868 (2007)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Kuroki G.: Quantum groups and quantization of Weyl group symmetries of Painlevé systems. Adv. Stud. Pure Math. 61, 289–325 (2011)MathSciNetGoogle Scholar
  13. 13.
    Miller K.S., Ross B.: An introduction to the fractional calculus and fractional differential equations. Wiley-Interscience, New York (1993)MATHGoogle Scholar
  14. 14.
    Kohno M.: Global Analysis in Linear Differential Equations. Kluwer, Dordrecht (1999)MATHCrossRefGoogle Scholar
  15. 15.
    Haraoka, Y., Hamaguchi, S.: Topological theory for Selberg type integral associated with rigid Fuchsian systems. Math. Ann. (2011). doi: 10.1007/s00208-011-0717-5

Copyright information

© Springer 2012

Authors and Affiliations

  1. 1.Department of MathematicsKobe UniversityKobeJapan

Personalised recommendations