Skip to main content
Log in

Boundary Coupling of Lie Algebroid Poisson Sigma Models and Representations up to Homotopy

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

A general form for the boundary coupling of a Lie algebroid Poisson sigma model is proposed. The approach involves using the Batalin–Vilkovisky formalism in the AKSZ geometrical version, to write a BRST-invariant coupling for a representation up to homotopy of the target Lie algebroid or its subalgebroids. These considerations lead to a conjectural description of topological D-branes on generalized complex manifolds, which includes A-branes and B-branes as special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrov M., Schwarz A., Zaboronsky O., Kontsevich M.: The geometry of the master equation and topological quantum field theory. Int. J. Modern Phys. A 12(7), 1405–1429 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Arias Abad, C., Crainic, M.: Representations up to homotopy of Lie algebroids. http://arxiv.org/abs/0901.0319

  3. Aspinwall, P.S., Bridgeland, T., Craw, A., Douglas, M.R., Gross, M., Kapustin, A., Moore, G.W., Segal, G., Szendrői, B., Wilson, P.M.H.: Dirichlet Branes and Mirror Symmetry. Clay Mathematics Monographs, vol. 4. American Mathematical Society, Providence (2009)

  4. Bergman, A.: Topological D-branes from descent. http://arxiv.org/abs/0808.0168

  5. Block, J.: Duality and equivalence of module categories in noncommutative geometry. In: A Celebration of the Mathematical Legacy of Raoul Bott, CRM Proc. Lecture Notes, vol. 50, pp. 311–339. American Mathematical Society, Providence (2010)

  6. Bonechi, F., Qiu, J., Zabzine, M.: Wilson lines from representations of NQ-manifolds. http://arxiv.org/abs/1108.5358

  7. Bonechi F., Zabzine M.: Poisson sigma model over group manifolds. J. Geom. Phys. 54(2), 173–196 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Bonechi F., Zabzine M.: Lie algebroids, Lie groupoids and TFT. J. Geom. Phys. 57(3), 731–744 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Bonechi F., Zabzine M.: Poisson sigma model on the sphere. Commun. Math. Phys. 285(3), 1033–1063 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Brunner, I., Herbst, M., Lerche, W., Scheuner, B.: Landau–Ginzburg realization of open string TFT. J. High Energy Phys. 11, 043 (2006, electronic)

    Google Scholar 

  11. Calvo I., Falceto F.: Poisson reduction and branes in Poisson-sigma models. Lett. Math. Phys. 70(3), 231–247 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Cattaneo A.S., Felder G.: A path integral approach to the Kontsevich quantization formula. Commun. Math. Phys. 212(3), 591–611 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Cattaneo, A.S., Felder, G.: On the AKSZ formulation of the Poisson sigma model. Lett. Math. Phys. 56(2), 163–179 (2001, EuroConférence Moshé Flato 2000, Part II (Dijon))

    Google Scholar 

  14. Cattaneo A.S., Felder G.: Coisotropic submanifolds in Poisson geometry and branes in the Poisson sigma model. Lett. Math. Phys. 69, 157–175 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Cattaneo A.S., Qiu J., Zabzine M.: 2D and 3D topological field theories for generalized complex geometry. Adv. Theor. Math. Phys. 14(2), 695–725 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Cavalcanti, G.R.: New aspects of the dd c-lemma. Ph.D. dissertation, Oxford University (2004)

  17. Diaconescu, D.-E.: Enhanced D-brane categories from string field theory. J. High Energy Phys. 6, Paper 16, 19 (2001)

    Google Scholar 

  18. Fernandes R.L.: Lie algebroids, holonomy and characteristic classes. Adv. Math. 170(1), 119–179 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gómez-Mont X.: Transversal holomorphic structures. J. Diff. Geom. 15(2), 161–185 (1980)

    MATH  Google Scholar 

  20. Gualtieri, M.: Generalized complex geometry. http://arxiv.org/abs/math/0703298

  21. Gualtieri, M.: Generalized complex geometry. Ph.D. dissertation, Oxford University (2003)

  22. Gualtieri, M.: Branes on Poisson varieties. In: The Many Facets of Geometry, pp. 368–394. Oxford University Press, Oxford (2010)

  23. Henneaux M., Teitelboim C.: Quantization of gauge systems. Princeton University Press, Princeton (1992)

    MATH  Google Scholar 

  24. Herbst, M.: On higher rank coisotropic A-branes. http://arxiv.org/abs/1003.3771

  25. Herbst, M., Hori, K., Page, D.: Phases of N =  2 theories in 1 +  1 dimensions with boundary. http://arxiv.org/abs/0803.2045

  26. Herbst, M., Lazaroiu, C.-I.: Localization and traces in open-closed topological Landau-Ginzburg models. J. High Energy Phys. 5, 044 (2005, electronic)

    Google Scholar 

  27. Hitchin N.: Generalized Calabi-Yau manifolds. Q. J. Math. 54(3), 281–308 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ikeda N.: Two-dimensional gravity and nonlinear gauge theory. Ann. Phys. 235(2), 435–464 (1994)

    Article  ADS  MATH  Google Scholar 

  29. Kapustin A.: Topological strings on noncommutative manifolds. Int. J. Geom. Methods Mod. Phys. 1(1–2), 49–81 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kapustin, A., Li, Y.: D-branes in Landau–Ginzburg models and algebraic geometry. J. High Energy Phys. 12, 005 (2003, electronic)

    Google Scholar 

  31. Kapustin A., Li Y.: Open-string BRST cohomology for generalized complex branes. Adv. Theor. Math. Phys. 9(4), 559–574 (2005)

    MathSciNet  MATH  Google Scholar 

  32. Kapustin A., Li Y.: Topological sigma-models with H-flux and twisted generalized complex manifolds. Adv. Theor. Math. Phys. 11(2), 261–290 (2007)

    MathSciNet  MATH  Google Scholar 

  33. Katz, S., Sharpe, E.: D-branes, open string vertex operators, and Ext groups. Adv. Theor. Math. Phys. 6(6), 979–1030 (2003)

    Google Scholar 

  34. Kraus, P., Larsen, F.: Boundary string field theory of the \({{\rm D \overline D}}\) system. Phys. Rev. D (3), 63(10):106004, 17 (2001)

    Google Scholar 

  35. Lazaroiu, C.I.: On the boundary coupling of topological Landau–Ginzburg models. J. High Energy Phys. 5, 037 (2005, electronic)

    Google Scholar 

  36. Li, Y.: Anomalies and graded coisotropic branes. J. High Energy Phys. 3, 100 (2006, electronic)

    Google Scholar 

  37. Roytenberg D.: AKSZ-BV formalism and Courant algebroid-induced topological field theories. Lett. Math. Phys. 79(2), 143–159 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Schaller P., Strobl T.: Poisson structure induced (topological) field theories. Modern Phys. Lett. A 9(33), 3129–3136 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Schwarz A.: Geometry of Batalin–Vilkovisky quantization. Commun. Math. Phys. 155(2), 249–260 (1993)

    Article  ADS  MATH  Google Scholar 

  40. Takayanagi, T., Terashima, S., Uesugi, T.: Brane-antibrane action from boundary string field theory. J. High Energy Phys. 3, Paper 19, 37 (2001)

    Google Scholar 

  41. Vaĭntrob A.Y.: Lie algebroids and homological vector fields. Uspekhi Mat. Nauk 52(2(314)), 161–162 (1997)

    Google Scholar 

  42. Voronov, T.: Graded manifolds and Drinfeld doubles for Lie bialgebroids. In: Quantization, Poisson Brackets and Beyond (Manchester, 2001), Contemp. Math., vol. 315, pp. 131–168. American Mathematical Society, Providence (2002)

  43. Witten E.: A note on the antibracket formalism. Modern Phys. Lett. A 5(7), 487–494 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Witten, E.: Chern-Simons gauge theory as a string theory. In: The Floer Memorial Volume, Progr. Math., vol. 133, pp. 637–678. Birkhäuser, Basel (1995)

  45. Zucchini, R.: The Lie algebroid Poisson sigma model. J. High Energy Phys. 12, 062, 29 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Quintero Vélez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vélez, A.Q. Boundary Coupling of Lie Algebroid Poisson Sigma Models and Representations up to Homotopy. Lett Math Phys 102, 31–64 (2012). https://doi.org/10.1007/s11005-012-0549-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-012-0549-6

Mathematics Subject Classification (2000)

Keywords

Navigation