Letters in Mathematical Physics

, Volume 101, Issue 1, pp 85–101 | Cite as

A New Dynamical Reflection Algebra and Related Quantum Integrable Systems

  • Jean Avan
  • Eric Ragoucy


We propose a new dynamical reflection algebra, distinct from the previous dynamical boundary algebra and semi-dynamical reflection algebra. The associated Yang–Baxter equations, coactions, fusions, and commuting traces are derived. Explicit examples are given and quantum integrable Hamiltonians are constructed. They exhibit features similar to the Ruijsenaars–Schneider Hamiltonians.

Mathematics Subject Classification (2000)

81R12 16T15 16T25 


integrable systems dynamical algebras reflection algebras 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cherednik I.V.: Factorizing particles on a half line and root systems. Theor. Math. Phys. 61, 977 (1984)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Sklyanin E.K.: Boundary conditions for integrable quantum systems. J. Phys. A 21, 2375 (1988)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Kulish P.P., Sklyanin E.K.: Algebraic structures related to reflection equations. J. Phys. A 25, 5963 (1992)MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Freidel L., Maillet J.M.: Quadratic algebras and integrable systems. Phys. Lett. B 262, 278 (1991)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Behrend R.E., Pearce P.A., O’Brien D.: A construction of solutions to reflection equations for interaction-round-a-face models. J. Stat. Phys. 84, 1 (1996) arXiv:hep-th/9507118MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Gervais J.L., Neveu A.: Novel triangle relation and absence of tachyons in Liouville string field theory. Nucl. Phys. B 238, 125 (1984)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Felder, G.: Elliptic quantum groups. Proc. ICMP Paris (1994). arXiv:hep-th/9412207Google Scholar
  8. 8.
    Fan H., Hou B.-Y., Li G.-L., Shi K.A.: Integrable \({A_{n-1}^{(1)} }\) IRF model with reflecting boundary condition. Mod. Phys. Lett. A 26, 1929 (1997)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Nagy Z., Avan J.: Spin chains from dynamical quadratic algebras. J. Stat. Mech. 2, P03005 (2005) arXiv:math/0501029MathSciNetCrossRefGoogle Scholar
  10. 10.
    Arutyunov G.E., Frolov S.A.: Quantum dynamical R-matrices and quantum Frobenius group. Commun. Math. Phys. 191, 15–29 (1998) arXiv:q-alg/9610009MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Arutyunov G.E., Chekhov L.O., Frolov S.A.: Comm. Math. Phys 192, 405–432 (1998) arXiv:q-alg/9612032MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    Ruijsenaars S.N.M., Schneider H.: A new class of integrable systems and its relation to solitons. Ann. Phys. 170, 370 (1986)MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    Nagy Z., Avan J., Rollet G.: Construction of dynamical quadratic algebras. Lett. Math. Phys. 67, 1–11 (2004) arXiv:math/0307026MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    Avan J., Rollet G.: Parametrization of semi-dynamical quantum reflection algebra. J. Phys. A 40, 2709–2731 (2007) arXiv:math/0611184MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    Jimbo M., Konno H., Odake S., Shiraishi J.: Quasi-Hopf twistors for elliptic quantum groups. Transformation Groups 4, 303–327 (1999) arXiv:q-alg/9712029MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Arnaudon D., Buffenoir E., Ragoucy E., Roche Ph.: Universal solutions of quantum dynamical Yang–Baxter equations. Lett. Math. Phys. 44, 201 (1998) arXiv:q-alg/9712037MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Buffenoir E., Roche Ph., Terras V.: Quantum dynamical coboundary equation for finite dimensional simple Lie algebras. Adv. Math. 214, 181 (2007) arXiv:math/ 0512500MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Buffenoir, E., Roche, P., Terras, V.: Universal Vertex-IRF Transformation for Quantum Affine Algebras. arXiv:0707.0955Google Scholar
  19. 19.
    Nagy Z., Avan J., Doikou A., Rollet G.: Commuting quantum traces for quadratic algebras. J. Math. Phys. 46, 083516 (2005) arXiv:math/0403246MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Avan J., Zambon C.: On the semi-dynamical reflection equation: solutions and structure matrices. J. Phys. A 41, 194001 (2008) arXiv:0707.3036MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Bartocci C., Falqui G., Mencattini I., Ortenzi G., Pedroni M.: On the geometric origin of the bi-Hamiltonian structure of the Calogero-Moser system. Int. Math. Res. Not. 2010, 279–296 (2010) arXiv:0902.0953v2MathSciNetMATHGoogle Scholar
  22. 22.
    Magri, F., Casati, P., Falqui, G., Pedroni, M.: Eight lectures on integrable systems. In: Kosmann-Schwarzbach, Y., et al. (eds.) Integrability of Nonlinear Systems. Lecture Notes in Physics, vol. 495, 2nd edn, pp. 209–250 (2004)Google Scholar
  23. 23.
    Cremmer E., Gervais J.-L.: The quantum group structure associated with non-linearly extended Virasoro algebras. Commun. Math. Phys. 134, 619–632 (1990)MathSciNetADSMATHCrossRefGoogle Scholar
  24. 24.
    Hadjiivanov L.K., Isaev A.P., Ogievetsky O.V., Pyatov P.N., Todorov I.T.: Hecke algebraic properties of dynamical R-matrices. Application to related quantum matrix algebras. J. Math. Phys. 40, 427–448 (1999)MathSciNetMATHGoogle Scholar
  25. 25.
    Olshanski, G.: Twisted Yangians and infinite-dimensional classical Lie algebras. In: Kulish, P.P. (ed.) ‘Quantum Groups’. Lecture Notes in Mathematics, vol. 1510, pp. 103–120. Springer, Berlin-Heidelberg (1992)Google Scholar
  26. 26.
    Molev A., Nazarov M., Olshanski G.: Yangians and classical Lie algebras. Russian Math. Survey 51, 205 (1996) arXiv:hep-th/9409025ADSMATHCrossRefGoogle Scholar
  27. 27.
    Molev A., Ragoucy E., Sorba P.: Coideal subalgebras in quantum affine algebras. Rev. Math. Phys. 15, 789 (2003) arXiv:math.QA/0208140MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Avan J., Babelon O., Billey E.: The Gervais–Neveu–Felder equation and quantum Calogero–Moser systems. Commun. Math. Phys. 178, 281 (1996)MathSciNetADSMATHCrossRefGoogle Scholar
  29. 29.
    Nagy, Z.: Systèmes intégrables et algèbres de réflexion dynamiques. PhD Thesis, Cergy Pontoise Univ. (2005).
  30. 30.
    Maillet J.-M.: Lax equations and quantum groups. Phys. Lett. B 245, 480 (1990)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  1. 1.LPTM, CNRS and Université de Cergy-PontoiseCergy-Pontoise CedexFrance
  2. 2.LAPTh, CNRS and Université de SavoieAnnecy-Le-Vieux CedexFrance

Personalised recommendations