Letters in Mathematical Physics

, Volume 98, Issue 1, pp 79–95 | Cite as

An Eigenvalue Estimate and Its Application to Non-Selfadjoint Jacobi and Schrödinger Operators

  • Marcel Hansmann


For bounded linear operators A, B on a Hilbert space \({\mathcal{H}}\) we show that \({ \sum_{\lambda}{\rm dist}(\lambda, {\rm Num}(A))^p}\) is bounded from above by the Schatten-p-norm of BA. Here, the sum is taken over all discrete eigenvalues of B and Num(A) denotes the numerical range of A. We apply this estimate to recover and improve some Lieb–Thirring type inequalities for non-selfadjoint Jacobi and Schrödinger operators.

Mathematics Subject Classification (2000)

47A75 47A12 47B10 35J10 47B36 


Eigenvalue estimates numerical range Lieb–Thirring inequalities Schrödinger operators complex-valued potentials Jacobi operators 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Austern N.: The use of complex potentials in nuclear physics. Ann. Phys. 45(1), 113–131 (1967)ADSCrossRefGoogle Scholar
  2. 2.
    Berry M.V.: Physics of non-Hermitian degeneracies. Czechoslovak J. Phys. 54(10), 1039–1047 (2004)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Bhatia R.: Matrix analysis. Graduate Texts in Mathematics, vol. 169. Springer, New York (1997)Google Scholar
  4. 4.
    Bhatia, R.: Perturbation bounds for matrix eigenvalues. Classics in Applied Mathematics, vol. 53. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2007, reprint of the 1987 original)Google Scholar
  5. 5.
    Bhatia R., Davis Ch.: Perturbation of extended enumerations of eigenvalues. Acta Sci. Math. (Szeged) 65(1–2), 277–286 (1999)MathSciNetMATHGoogle Scholar
  6. 6.
    Bhatia R., Sinha K.B.: A unitary analogue of Kato’s theorem on variation of discrete spectra. Lett. Math. Phys. 15(3), 201–204 (1988)MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Borichev A., Golinskii L., Kupin S.: A Blaschke-type condition and its application to complex Jacobi matrices. Bull. Lond. Math. Soc. 41, 117–123 (2009)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Bouldin R.: Best approximation of a normal operator in the Schatten p-norm. Proc. Am. Math. Soc. 80(2), 277–282 (1980)MathSciNetMATHGoogle Scholar
  9. 9.
    Bruneau V., Ouhabaz E.M.: Lieb–Thirring estimates for non-self-adjoint Schrödinger operators. J. Math. Phys. 49(9), 093504, 10 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Demuth M., Hansmann M., Katriel G.: On the discrete spectrum of non-selfadjoint operators. J. Funct. Anal. 257, 2742–2759 (2009)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Demuth M., Katriel G.: Eigenvalue inequalities in terms of Schatten norm bounds on differences of semigroups, and application to Schrödinger operators. Ann. Henri Poincaré 9(4), 817–834 (2008)MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    Engel K.-J., Nagel R.: One-Parameter Semigroups for Linear Evolution Equations. Springer, New York (2000)MATHGoogle Scholar
  13. 13.
    Favorov, S., Golinskii, L.: A Blaschke-type condition for analytic and subharmonic functions and application to contraction operators. In: Linear and Complex Analysis, Am. Math. Soc. Transl. Ser. 2, vol. 226, pp. 37–47. American Mathematical Society, Providence (2009)Google Scholar
  14. 14.
    Frank, R.L.: Eigenvalue bounds for Schrödinger operators with complex potentials. Bull. Lond. Math. Soc. (2011, to appear)Google Scholar
  15. 15.
    Frank R.L., Laptev A., Lieb E.H., Seiringer R.: Lieb–Thirring inequalities for Schrödinger operators with complex-valued potentials. Lett. Math. Phys. 77(3), 309–316 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    Gohberg I.C., Krein M.G.: Introduction to the theory of linear nonselfadjoint operators. American Mathematical Society, Providence (1969)MATHGoogle Scholar
  17. 17.
    Golinskii L., Kupin S.: Lieb–Thirring bounds for complex Jacobi matrices. Lett. Math. Phys. 82(1), 79–90 (2007)MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    Gustafson K.E., Rao D.K.M.: Numerical Range. Universitext. Springer, New York (1997)CrossRefGoogle Scholar
  19. 19.
    Haagerup U., de la Harpe P.: The numerical radius of a nilpotent operator on a Hilbert space. Proc. Am. Math. Soc. 115(2), 371–379 (1992)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Hansmann M.: Estimating eigenvalue moments via Schatten norm bounds on semigroup differences. Math. Phys. Anal. Geom. 10(3), 261–270 (2007)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Hansmann M., Katriel G.: Inequalities for the eigenvalues of non-selfadjoint Jacobi operators. Complex Anal. Oper. Theory 5(1), 197–218 (2011)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Hundertmark D., Simon B.: Lieb–Thirring inequalities for Jacobi matrices. J. Approx. Theory 118(1), 106–130 (2002)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Kato T.: Variation of discrete spectra. Commun. Math. Phys. 111(3), 501–504 (1987)ADSMATHCrossRefGoogle Scholar
  24. 24.
    Kato, T.: Perturbation theory for linear operators. Classics in Mathematics. Springer, Berlin (1995, reprint of the 1980 edition)Google Scholar
  25. 25.
    Laptev A., Safronov O.: Eigenvalue estimates for Schrödinger operators with complex potentials. Commun. Math. Phys. 292(1), 29–54 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  26. 26.
    Reed M., Simon B.: Methods of Modern Mathematical Physics IV. Analysis of Operators. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1978)MATHGoogle Scholar
  27. 27.
    Safronov O.: On a sum rule for Schrödinger operators with complex potentials. Proc. Am. Math. Soc. 138, 2107–2112 (2010)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Simon B.: Trace ideals and their applications. 2nd edn. American Mathematical Society, Providence (2005)MATHGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Faculty of MathematicsChemnitz University of TechnologyChemnitzGermany

Personalised recommendations