Advertisement

Letters in Mathematical Physics

, Volume 99, Issue 1–3, pp 547–565 | Cite as

Review of AdS/CFT Integrability. Chapter VI.2: Yangian Algebra

  • Alessandro Torrielli
Article

Abstract

We review the study of Hopf algebras, classical and quantum R-matrices, infinite-dimensional Yangian symmetries and their representations in the context of integrability for the \({\mathcal{N} = 4}\) versus AdS 5 × S 5 correspondence.

Mathematics Subject Classification (2010)

81T60 81T30 81U15 16T05 17B65 

Keywords

ADS/CFT supersymmetry integrability exact S-matrix Hopf algebras quantum groups Yangians 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Staudacher, M.: Talk at “Strings 2008”. CERN, Geneva, 18–23 August 2008. http://ph-dep-th.web.cern.ch/ph-dep-th/content2/workshops/strings2008/
  2. 2.
    Janik R.A.: The AdS5 × S5 superstring worldsheet S-matrix and crossing symmetry. Phys. Rev. D 73, 086006 (2006) hep-th/0603038MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Gomez C., Hernandez R.: The magnon kinematics of the AdS/CFT correspondence. JHEP 0611, 021 (2006) hep-th/0608029MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Plefka J., Spill F., Torrielli A.: On the Hopf algebra structure of the AdS/CFT S-matrix. Phys. Rev. D 74, 066008 (2006) hep-th/0608038MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Beisert, N.: The S-Matrix of AdS/CFT and Yangian Symmetry. PoS SOLVAY 002 (2006). arxiv:0704.0400Google Scholar
  6. 6.
    Kirillov A.N., Reshetikhin N.Y.: The Yangians, Bethe Ansatz and combinatorics. Lett. Math. Phys. 12, 199 (1986)MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    de Leeuw M.: The Bethe ansatz for AdS5 × S5 bound states. JHEP 0901, 005 (2009) arxiv:0809.0783ADSCrossRefGoogle Scholar
  8. 8.
    Arutyunov G., de Leeuw M., Torrielli A.: The Bound State S-Matrix for AdS5 × S5 Superstring. Nucl. Phys. B 819, 319 (2009) arxiv:0902.0183ADSMATHCrossRefGoogle Scholar
  9. 9.
    Matsumoto T., Moriyama S., Torrielli A.: A Secret Symmetry of the AdS/CFT S-matrix. JHEP 0709, 099 (2007) arxiv:0708.1285MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Beisert N., Spill F.: The Classical r-matrix of AdS/CFT and its Lie Bialgebra Structure. Commun. Math. Phys. 285, 537 (2009) arxiv:0708.1762MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Drummond, J.M.: Review of AdS/CFT integrability, chapter V.2: dual superconformal symmetry. Lett. Math. Phys. Published in this volume. arxiv:1012.4002Google Scholar
  12. 12.
    Chari V., Pressley A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994)MATHGoogle Scholar
  13. 13.
    Zamolodchikov A.B., Zamolodchikov A.B.: Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field models. Ann. Phys. 120, 253 (1979)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Dorey, P.: Exact S matrices. hep-th/9810026Google Scholar
  15. 15.
    Etingof P., Schiffman O.: Lectures on Quantum Groups. International Press, Bostan (1998)MATHGoogle Scholar
  16. 16.
    MacKay N.J.: Introduction to Yangian symmetry in integrable field theory. Int. J. Mod. Phys. A 20, 7189 (2005) hep-th/0409183MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    Molev A.: Yangians and Classical Lie Algebras. AMS, Providence (2007)MATHGoogle Scholar
  18. 18.
    Faddeev L.D., Takhtajan L.A.: Hamiltonian Methods in the Theory of Solitons. Springer, Berlin (1987)MATHGoogle Scholar
  19. 19.
    Curtright T., Zachos C.K.: Supersymmetry and the nonlocal Yangian deformation symmetry. Nucl. Phys. B 402, 604 (1993) hep-th/9210060MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Zhang Y.-Z.: Super-Yangian double and its central extension. Phys. Lett. A 234, 20 (1997)MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    Stukopin V.: Yangians of classical Lie superalgebras: basic constructions, quantum double and universal R-matrix. Proc. Inst. Math. NAS Ukraine 50, 1195 (2004)MathSciNetGoogle Scholar
  22. 22.
    Gow L.: Gauss Decomposition of the Yangian \({Y(\mathfrak{gl}(m|n))}\) . Commun. Math. Phys. 276, 799 (2007) math/0605219MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    Spill F.: Weakly coupled \({\mathcal{N} = 4}\) Super Yang-Mills and \({\mathcal{N} = 6}\) Chern-Simons theories from u(2/2) Yangian symmetry. JHEP 0903, 014 (2009) arxiv:0810.3897MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Rej, A., Spill, F.: The Yangian of sl(n/m) and the universal R-matrix. arxiv:1008.0872Google Scholar
  25. 25.
    Drinfel’d V.G.: Quantum groups. J. Math. Sci. 41, 898 (1988)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Drinfeld V.G.: A new realization of Yangians and quantum affine algebras. Soviet Math. Dokl. 36, 212 (1988)MathSciNetGoogle Scholar
  27. 27.
    Khoroshkin S.M., Tolstoy V.N.: Yangian double. Lett. Math. Phys. 36, 373 (1996) hep-th/9406194MathSciNetADSMATHCrossRefGoogle Scholar
  28. 28.
    Bernard D.: An Introduction to Yangian Symmetries. Int. J. Mod. Phys. B 7, 3517 (1993) hep-th/9211133MathSciNetADSMATHCrossRefGoogle Scholar
  29. 29.
    Dolan L., Nappi C.R., Witten E.: A relation between approaches to integrability in superconformal Yang-Mills theory. JHEP 0310, 017 (2003) hep-th/0308089MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    Dolan, L., Nappi, C.R., Witten, E.: Yangian symmetry in D = 4 superconformal Yang-Mills theory. hep-th/0401243Google Scholar
  31. 31.
    Dolan L., Nappi C.R.: Spin models and superconformal Yang-Mills theory. Nucl. Phys. B 717, 361 (2005) hep-th/0411020MathSciNetADSMATHCrossRefGoogle Scholar
  32. 32.
    Serban D., Staudacher M.: Planar \({\mathcal{N} = 4}\) gauge theory and the Inozemtsev long range spin chain. JHEP 0406, 001 (2004) hep-th/0401057MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    Agarwal A., Rajeev S.G.: Yangian symmetries of matrix models and spin chains: the dilatation operator of \({\mathcal{N} = 4}\) SYM. Int. J. Mod. Phys. A 20, 5453 (2005) hep-th/0409180MathSciNetADSMATHCrossRefGoogle Scholar
  34. 34.
    Agarwal, A.: Comments on higher loop integrability in the su(1/1) sector of \({\mathcal{N} = 4}\) SYM: lessons from the su(2) sector. hep-th/0506095Google Scholar
  35. 35.
    Zwiebel B.I.: Yangian symmetry at two-loops for the su(2/1) sector of \({\mathcal{N} = 4}\) SYM. J. Phys. A 40, 1141 (2007) hep-th/0610283MathSciNetADSMATHCrossRefGoogle Scholar
  36. 36.
    Beisert N., Zwiebel B.I.: On symmetry enhancement in the psu(1,1/2) Sector of \({\mathcal{N} = 4}\) SYM. JHEP 0710, 031 (2007) arxiv:0707.1031MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    Rej, A.: Review of AdS/CFT integrability, chapter I.3: long-range spin chains. Lett. Math. Phys. Published in this volume. arxiv:1012.3985Google Scholar
  38. 38.
    Beisert N., Kristjansen C., Staudacher M.: The dilatation operator of \({\mathcal{N} = 4}\) super Yang–Mills theory. Nucl. Phys. B 664, 131 (2003) hep-th/0303060MathSciNetADSMATHCrossRefGoogle Scholar
  39. 39.
    Beisert N., Klose T.: Long-range gl(n) integrable spin chains and plane-wave matrix theory. J. Stat. Mech. 0607, P006 (2006) hep-th/0510124Google Scholar
  40. 40.
    Beisert N., Erkal D.: Yangian symmetry of long-range gl(N) integrable spin chains. J. Stat. Mech. 0803, P03001 (2008) arxiv:0711.4813MathSciNetCrossRefGoogle Scholar
  41. 41.
    Zwiebel B.I.: Iterative Structure of the \({\mathcal{N} = 4}\) SYM Spin Chain. JHEP 0807, 114 (2008) arxiv:0806.1786MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    Agarwal A., Rajeev S.G.: The dilatation operator of \({\mathcal{N} = 4}\) SYM and classical limits of spin chains and matrix models. Mod. Phys. Lett. A 19, 2549 (2004) hep-th/0405116MathSciNetADSMATHCrossRefGoogle Scholar
  43. 43.
    Agarwal A., Polychronakos A.P.: BPS operators in \({\mathcal{N} = 4}\) SYM: Calogero models and 2D fermions. JHEP 0608, 034 (2006) hep-th/0602049MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    Beisert N. On Yangian symmetry in planar \({\mathcal{N} = 4}\) SYM. arxiv:1004.5423Google Scholar
  45. 45.
    Magro, M.: Review of AdS/CFT integrability, chapter II.3: sigma model. Gauge Fixing. Lett. Math. Phys. Published in this volume. arxiv:1012.3988Google Scholar
  46. 46.
    Schafer-Nameki, S.: Review of AdS/CFT integrability, chapter II.4: the spectral curve. Lett. Math. Phys. Published in this volume. arxiv:1012.3989Google Scholar
  47. 47.
    Lüscher M.: Quantum nonlocal charges and absence of particle production in the two-dimensional nonlinear sigma model. Nucl. Phys. B 135, 1 (1978)ADSCrossRefGoogle Scholar
  48. 48.
    Bena I., Polchinski J., Roiban R.: Hidden symmetries of the AdS5 × S5 superstring. Phys. Rev. D 69, 046002 (2004) hep-th/0305116MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    Mandal G., Suryanarayana N.V., Wadia S.R.: Aspects of semiclassical strings in AdS(5). Phys. Lett. B 543, 81 (2002) hep-th/0206103MathSciNetADSMATHCrossRefGoogle Scholar
  50. 50.
    Alday L.F.: Non-local charges on AdS5 × S5 and pp-waves. JHEP 0312, 033 (2003) hep-th/0310146MathSciNetADSCrossRefGoogle Scholar
  51. 51.
    Arutyunov G., Staudacher M.: Matching higher conserved charges for strings and spins. JHEP 0403, 004 (2004) hep-th/0310182MathSciNetADSCrossRefGoogle Scholar
  52. 52.
    Hatsuda M., Yoshida K.: Classical integrability and super Yangian of superstring on AdS5 × S5. Adv. Theor. Math. Phys. 9, 703 (2005) hep-th/0407044MathSciNetMATHGoogle Scholar
  53. 53.
    Das A.K., Maharana J., Melikyan A., Sato M.: The algebra of transition matrices for the AdS5 × S5 superstring. JHEP 0412, 055 (2004) hep-th/0411200MathSciNetADSCrossRefGoogle Scholar
  54. 54.
    Alday L.F., Arutyunov G., Tseytlin A.A.: On integrability of classical superstrings in AdS5 × S5. JHEP 0507, 002 (2005) hep-th/0502240MathSciNetADSCrossRefGoogle Scholar
  55. 55.
    Frolov S.: Lax pair for strings in Lunin-Maldacena background. JHEP 0505, 069 (2005) hep-th/0503201ADSCrossRefGoogle Scholar
  56. 56.
    Das A.K., Melikyan A., Sato M.: The algebra of flat currents for the string on AdS5 × S5 in the light-cone gauge. JHEP 0511, 015 (2005) hep-th/0508183MathSciNetADSCrossRefGoogle Scholar
  57. 57.
    Vicedo B.: Hamiltonian dynamics and the hidden symmetries of the AdS5 × S5 superstring. JHEP 1001, 102 (2010) arxiv:0910.0221MathSciNetADSCrossRefGoogle Scholar
  58. 58.
    Bernard D., Leclair A.: The Quantum double in integrable quantum field theory. Nucl. Phys. B 399, 709 (1993) hep-th/9205064MathSciNetADSMATHCrossRefGoogle Scholar
  59. 59.
    Lüscher M., Pohlmeyer K.: Scattering of massless lumps and nonlocal charges in the two-dimensional classical nonlinear sigma model. Nucl. Phys. B 137, 46 (1978)ADSCrossRefGoogle Scholar
  60. 60.
    MacKay N.J.: On the classical origins of Yangian symmetry in integrable field theory. Phys. Lett. B 281, 90 (1992)MathSciNetADSCrossRefGoogle Scholar
  61. 61.
    Beisert N.: The su(2/2) dynamic S-matrix. Adv. Theor. Math. Phys. 12, 945 (2008) hep-th/0511082MathSciNetGoogle Scholar
  62. 62.
    Klose T., McLoughlin T., Roiban R., Zarembo K.: Worldsheet scattering in AdS5 × S5. JHEP 0703, 094 (2007) hep-th/0611169MathSciNetADSCrossRefGoogle Scholar
  63. 63.
    Arutyunov G., Frolov S., Plefka J., Zamaklar M.: The off-shell symmetry algebra of the light-cone AdS5 × S5 superstring. J. Phys. A 40, 3583 (2007) hep-th/0609157MathSciNetADSMATHCrossRefGoogle Scholar
  64. 64.
    Arutyunov G., Frolov S., Zamaklar M.: The Zamolodchikov-Faddeev algebra for AdS5 × S5 superstring. JHEP 0704, 002 (2007) hep-th/0612229MathSciNetADSCrossRefGoogle Scholar
  65. 65.
    Beisert N., Koroteev P.: Quantum Deformations of the One-Dimensional Hubbard Model. J. Phys. A 41, 255204 (2008) arxiv:0802.0777MathSciNetADSCrossRefGoogle Scholar
  66. 66.
    Beisert, N.: The classical trigonometric r-matrix for the quantum-deformed Hubbard chain. arxiv:1002.1097Google Scholar
  67. 67.
    Spill, F.: Hopf algebras in the AdS/CFT correspondence. Diploma Thesis, Humboldt University of BerlinGoogle Scholar
  68. 68.
    Spill F.: Symmetries of the AdS/CFT S-matrix. Acta Phys. Polon. B 39, 3135 (2008)ADSGoogle Scholar
  69. 69.
    Serganova V.V.: Automorphisms of simple lie superalgebras. Math. USSR Izv. 24, 539 (1985)MATHCrossRefGoogle Scholar
  70. 70.
    Beisert N.: The analytic Bethe ansatz for a chain with centrally extended su(2/2) Symmetry. J. Stat. Mech. 0701, P017 (2007) nlin/0610017Google Scholar
  71. 71.
    Matsumoto T., Moriyama S.: An exceptional algebraic origin of the AdS/CFT Yangian symmetry. JHEP 0804, 022 (2008) arxiv:0803.1212MathSciNetADSCrossRefGoogle Scholar
  72. 72.
    Bazhanov, V.: Talk at the conference on “Integrability in Gauge and String Theory”. Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Potsdam, 29 June–3 July 2009. http://int09.aei.mpg.de/talks/Bazhanov.pdf
  73. 73.
    Moriyama S., Torrielli A.: A Yangian double for the AdS/CFT classical r-matrix. JHEP 0706, 083 (2007) arxiv:0706.0884MathSciNetADSCrossRefGoogle Scholar
  74. 74.
    Belavin A.A., Drinfeld V.G.: Solutions of the classical Yang–Baxter equation for simple Lie algebras. Funct. Anal. Appl. 16, 159 (1982)MathSciNetCrossRefGoogle Scholar
  75. 75.
    Belavin A.A., Drinfeld V.G.: Triangle equation for simple Lie algebras. Math. Phys. Rev. 4, 93 (1984)MathSciNetMATHGoogle Scholar
  76. 76.
    Leites D.A., Serganova V.V.: Solutions of the classical Yang–Baxter equation for simple superalgebras. Theor. Math. Phys. 58, 16 (1984)MathSciNetMATHCrossRefGoogle Scholar
  77. 77.
    Karaali G.: Constructing r-matrices on simple Lie superalgebras. J. Algebra 282, 83 (2004) math/0303246MathSciNetMATHCrossRefGoogle Scholar
  78. 78.
    Karaali G.: A new Lie bialgebra structure on sl(2,1). Contemp. Math. 413, 101 (2006) math/0410473MathSciNetCrossRefGoogle Scholar
  79. 79.
    Berenstein D., Maldacena J.M., Nastase H.: Strings in flat space and pp waves from \({\mathcal{N} = 4}\) Super Yang Mills. JHEP 0204, 013 (2002) hep-th/0202021MathSciNetADSCrossRefGoogle Scholar
  80. 80.
    Arutyunov G., Frolov S.: On AdS5 × S5 string S-matrix. Phys. Lett. B 639, 378 (2006) hep-th/0604043MathSciNetADSCrossRefGoogle Scholar
  81. 81.
    Torrielli A.: Classical r-matrix of the su(2/2) SYM spin-chain. Phys. Rev. D 75, 105020 (2007) hep-th/0701281MathSciNetADSCrossRefGoogle Scholar
  82. 82.
    Khoroshkin S.M., Tolstoy V.N.: Universal R-matrix for quantized (super) algebras. Commun. Math. Phys. 141, 599 (1991)MathSciNetADSMATHCrossRefGoogle Scholar
  83. 83.
    de Leeuw, M.: The S-matrix of the AdS5 × S5 superstring. arxiv:1007.4931Google Scholar
  84. 84.
    de Leeuw M.: Bound States, Yangian Symmetry and Classical r-matrix for the AdS5 × S5 Superstring. JHEP 0806, 085 (2008) arxiv:0804.1047CrossRefGoogle Scholar
  85. 85.
    Vicedo, B.: The classical R-matrix of AdS/CFT and its Lie dialgebra structure. Lett. Math. Phys. 95, 249 (2011)Google Scholar
  86. 86.
    Spill F., Torrielli A.: On Drinfeld’s second realization of the AdS/CFT su(2/2) Yangian. J. Geom. Phys. 59, 489 (2009) arxiv:0803.3194MathSciNetADSMATHCrossRefGoogle Scholar
  87. 87.
    Matsumoto T., Moriyama S.: Serre Relation and Higher Grade Generators of the AdS/CFT Yangian Symmetry. JHEP 0909, 097 (2009) arxiv:0902.3299MathSciNetADSCrossRefGoogle Scholar
  88. 88.
    Torrielli A.: Structure of the string R-matrix. J. Phys. A 42, 055204 (2009) arxiv:0806.1299MathSciNetADSCrossRefGoogle Scholar
  89. 89.
    Heckenberger I., Spill F., Torrielli A., Yamane H.: Drinfeld second realization of the quantum affine superalgebras of D (1)(2,1/x) via the Weyl groupoid. Publ. Res. Inst. Math. Sci. Kyoto B 8, 171 (2008) arxiv:0705.1071MathSciNetGoogle Scholar
  90. 90.
    Bajnok, Z.: Review of AdS/CFT integrability, chapter III.6: thermodynamic Bethe ansatz. Lett. Math. Phys. Published in this volume. arxiv:1012.3995Google Scholar
  91. 91.
    Arutyunov G., Frolov S.: The S-matrix of string bound states. Nucl. Phys. B 804, 90 (2008) arxiv:0803.4323MathSciNetADSMATHCrossRefGoogle Scholar
  92. 92.
    Drinfeld V.G.: Quasi-Hopf algebras. Leningrad Math. J. 1, 1419 (1990)MathSciNetGoogle Scholar
  93. 93.
    Arutyunov G., de Leeuw M., Torrielli A.: Universal blocks of the AdS/CFT Scattering Matrix. JHEP 0905, 086 (2009) arxiv:0903.1833ADSCrossRefGoogle Scholar
  94. 94.
    Arutyunov G., de Leeuw M., Suzuki R., Torrielli A.: Bound State Transfer Matrix for AdS5 × S5 Superstring. JHEP 0910, 025 (2009) arxiv:0906.4783ADSCrossRefGoogle Scholar
  95. 95.
    Arutyunov G., de Leeuw M., Torrielli A.: On Yangian and Long Representations of the Centrally Extended su(2/2) Superalgebra. JHEP 1006, 033 (2010) arxiv:0912.0209ADSCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Institute for Theoretical Physics and Spinoza InstituteUtrecht UniversityUtrechtThe Netherlands
  2. 2.Department of MathematicsUniversity of York HeslingtonYorkUK

Personalised recommendations