Advertisement

Letters in Mathematical Physics

, Volume 97, Issue 2, pp 213–225 | Cite as

Scaling Limits for the System of Semi-Relativistic Particles Coupled to a Scalar Bose Field

  • Toshimitsu Takaesu
Article
  • 66 Downloads

Abstract

In this paper, the Hamiltonian for the system of semi-relativistic particles interacting with a scalar Bose field is investigated. A scaled total Hamiltonian of the system is defined and its scaling limit is considered. Then, a semi-relativistic Schrödinger operator with an effective potential is derived.

Mathematics Subject Classification (2010)

81Q10 62M15 

Keywords

spectral analysis relativistic Schrödinger operator quantum field theory. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arai A.: Asymptotic analysis and its application to the nonrelativistic limit of the Pauli-Fierz and a spin-boson model. J. Math. Phys. 32, 2653–2663 (1990)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Balinsky A.A., Evans W.D.: Spectral analysis of relativistic operators. Imperial College Press, London (2011)MATHGoogle Scholar
  3. 3.
    Carmona R., Masters W.C.: Relativistic Schrödinger operators: asymptotic behavior of the eigenfunctions. J. Funct. Anal. 91, 117–142 (1990)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Davies E.B.: Particle–boson interactions and the weak coupling limit. J. Math. Phys. 20, 345–351 (1979)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Daubechies I., Lieb E.H.: One-electron relativistic molecules with relativistic Coulomb Interaction. Commun. Math. Phys. 90, 497–510 (1983)MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Daubechies I.: One electron molecules with relativistic kinetic energy: properties of the discrete spectrum. Commun. Math. Phys. 94, 523–535 (1984)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Dereziński J.: The Mourre estimate for dispersive N-body Schrödinger operators. Trans. Am. Math. Soc. 317, 773–798 (1990)MATHCrossRefGoogle Scholar
  8. 8.
    Gérard C.: The mourre estimate for regular dispersive systems. Ann. Inst. H. Poincaré Phys. Théor. 54, 59–88 (1991)MATHGoogle Scholar
  9. 9.
    Herbst I.: Spectral theory of the operator (p 2 + m 2)1/2Ze 2 / r. Commun. Math. Phys. 53, 285–294 (1977)MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Hiroshima F.: Scaling limit of a model of quantum electrodynamics. J. Math. Phys. 34, 4478–4518 (1993)MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Hiroshima F.: Scaling limit of a model of quantum electrodynamics with many nonrelativistic particles. Rev. Math. Phys. 9, 201–225 (1997)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Hiroshima F.: Weak coupling limit with a removal of an ultraviolet cutoff for a Hamiltonian of particles interacting with a massive scalar field. Inf. Dim. Anal. Quantum Prob. Rel. Top. 1, 407–423 (1998)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Hiroshima F.: Weak coupling limit and a removing ultraviolet cutoff for a Hamiltonian of particles interacting with a quantized scalar field. J. Math. Phys. 40, 1215–1236 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    Hiroshima F.: Observable effects and parametrized scaling limits of a model in non-relativistic quantum electrodynamics. J. Math. Phys. 43, 1755–1795 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    Hiroshima F., Spohn H.: Enhanced binding through coupling to a quantum field. Ann. Henri. Poincaré 2, 1150–1187 (2001)MathSciNetGoogle Scholar
  16. 16.
    Ohkubo, A.: Scaling limit for the Derezinński–Gérard Model. Hokkaido Math. J. (to appear)Google Scholar
  17. 17.
    Reed M., Simon B.: Methods of Moden Mathematical Physics, vol. II. Academic Press, New York (1975)Google Scholar
  18. 18.
    Suzuki A.: Scaling limits for a general class of quantum field models and its applications to nuclear physics and condensed matter physics. Inf. Dim. Anal. Quantum Prob. Rel. Top. 10, 43–65 (2007)MATHCrossRefGoogle Scholar
  19. 19.
    Suzuki A.: Scaling limits for a generalization of the Nelson model and its application to nuclear physics. Rev. Math. Phys. 19, 131–155 (2007)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Solovej J.P., Sørensen T.Ø., Spitzer W.L.: Relativistic Scott correction for atoms and molecules. Commun. Pure Appl. Math. 63, 39–118 (2010)MATHCrossRefGoogle Scholar
  21. 21.
    Takaesu T.: Scaling limit of quantum electrodynamics with spatial cutoffs. J. Math. Phys. 52, 022305 (2011)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Umeda T.: Radiation conditions and resolvent estimates for relativistic Schrödinger operators. Ann. Inst. H. Poincaré Phys. Théor. 63, 277–296 (1995)MathSciNetMATHGoogle Scholar
  23. 23.
    Weder R.: Spectral properties of one-body relativistic spin-zero hamiltonians. Ann. Inst. H. Poincaré, Sect. A 20, 211–220 (1974)MathSciNetGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Faculty of MathematicsKyushu UniversityFukuokaJapan

Personalised recommendations