Advertisement

Letters in Mathematical Physics

, Volume 97, Issue 2, pp 165–183 | Cite as

A Formulation of Quantum Field Theory Realizing a Sea of Interacting Dirac Particles

  • Felix Finster
Article

Abstract

In this survey article, we explain a few ideas behind the fermionic projector approach and summarize recent results which clarify the connection to quantum field theory. The fermionic projector is introduced, which describes the physical system by a collection of Dirac states, including the states of the Dirac sea. Formulating the interaction by an action principle for the fermionic projector, we obtain a consistent description of interacting quantum fields which reproduces the results of perturbative quantum field theory. We find a new mechanism for the generation of boson masses and obtain small corrections to the field equations which violate causality.

Mathematics Subject Classification (2010)

81-02 81T15 81T27 

Keywords

Relativistic quantum theory Dirac sea fermionic projector 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bach V., Barbaroux J.-M., Helffer B., Siedentop H.: On the stability of the relativistic electron–positron field. Commun. Math. Phys. 201(2), 445–460 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Bär, C., Fredenhagen, K. (eds): Quantum Field Theory on Curved Spacetimes. Lecture Notes in Physics, vol. 786. Springer, Berlin (2009)Google Scholar
  3. 3.
    Christensen S.M.: Vacuum expectation value of the stress tensor in an arbitrary curved background: the covariant point-separation method. Phys. Rev. D (3) 14(10), 2490–2501 (1976)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Collins J.C.: Renormalization, Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1984)Google Scholar
  5. 5.
    Deckert, D.-A., Dürr, D., Merkl, F., Schottenloher, M.: Time Evolution of the External Field Problem in QED. arXiv:0906.0046 [math-ph] (2009)Google Scholar
  6. 6.
    Dirac P.A.M.: A theory of electrons and protons. Proc. R. Soc. Lond. A 126, 360–365 (1930)ADSMATHCrossRefGoogle Scholar
  7. 7.
    Dirac P.A.M.: Discussion of the infinite distribution of electrons in the theory of the positron. Proc. Cambridge Philos. Soc. 30, 150–163 (1934)CrossRefADSGoogle Scholar
  8. 8.
    Dirac, P.A.M.: Directions in physics. Wiley, New York (Five lectures delivered during a visit to Australia and New Zealand, August–September, 1975) 1978Google Scholar
  9. 9.
    Dürr H.-P., Heisenberg W., Mitter H., Schlieder S., Yamazaki K.: Zur Theorie der Elementarteilchen. Z. Naturf. 14a, 441–485 (1959)ADSGoogle Scholar
  10. 10.
    Dyson F.J.: The S matrix in quantum electrodynamics. Phys. Rev. 75, 1736–1755 (1949)MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Epstein H., Glaser V.: The role of locality in perturbation theory. Ann. Inst. H. Poincaré Section A (N.S.) 19, 211–295 (1973)MathSciNetGoogle Scholar
  12. 12.
    Feynman R.: The theory of positrons. Phys. Rev. 76, 749–759 (1949)MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    Fierz H., Scharf G.: Particle interpretation for external field problems in QED. Helv. Phys. Acta 52(4), 437–453 (1979)MathSciNetGoogle Scholar
  14. 14.
    Finster, F.: The Principle of the Fermionic Projector, hep-th/0001048, hep-th/0202059, hep-th/0210121. AMS/IP Studies in Advanced Mathematics, vol. 35. American Mathematical Society, Providence (2006)Google Scholar
  15. 15.
    Finster, F.: An Action Principle for an Interacting Fermion System and its Analysis in the Continuum Limit. arXiv:0908.1542 [math-ph] (2009)Google Scholar
  16. 16.
    Finster, F.: From discrete space-time to Minkowski space: Basic mechanisms, methods and perspectives. In: Fauser, B., Tolksdorf, J., Zeidler, E. (eds.) Quantum Field Theory. Birkhäuser Verlag, pp. 235–259 (2009). arXiv:0712.0685 [math-ph]Google Scholar
  17. 17.
    Finster, F.: Entanglement and second quantization in the framework of the fermionic projector. J. Phys. A Math. Theor. 43, 395302 (2010). arXiv:0911.0076 [math-ph]Google Scholar
  18. 18.
    Finster, F.: The fermionic projector, entanglement, and the collapse of the wave function. In: The Proceedings of DICE2010 (2011). arXiv:1011.2162 [quant-ph]Google Scholar
  19. 19.
    Finster, F., Grotz, A.: The causal perturbation expansion revisited: rescaling the interacting Dirac sea. J. Math. Phys. 51, 072301 (2010). arXiv:0901.0334 [math-ph]Google Scholar
  20. 20.
    Fulling S.A., Sweeny M., Wald R.M.: Singularity structure of the two-point function quantum field theory in curved spacetime. Commun. Math. Phys. 63(3), 257–264 (1978)MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    Glimm J., Jaffe A.: Quantum Physics, a Functional Integral Point of View, 2nd edn. Springer, New York (1987)Google Scholar
  22. 22.
    Gravejat, P., Lewin, M., Séré, E.: Renormalization and Asymptotic Expansion of Dirac’s Polarized Vacuum (2010). arXiv:1004.1734v1Google Scholar
  23. 23.
    Hainzl C., Lewin M., Séré E.: Existence of a stable polarized vacuum in the Bogoliubov–Dirac–Fock approximation. Commun. Math. Phys. 257(3), 515–562 (2005) arXiv:math-ph/0403005ADSMATHCrossRefGoogle Scholar
  24. 24.
    Hainzl C., Lewin M., Séré E.: Self-consistent solution for the polarized vacuum in a no-photon QED model. J. Phys. A Math. Theor. 38(20), 4483–4499 (2005) arXiv:physics/0404047ADSMATHCrossRefGoogle Scholar
  25. 25.
    Hainzl C., Lewin M., Séré E., Solovej J.P.: A minimization method for relativistic electrons in a mean-field approximation of quantum electrodynamics. Phys. Rev. A 76, 052104 (2007) arXiv:0706.1486 [physics.atom-ph]ADSCrossRefGoogle Scholar
  26. 26.
    Heisenberg W.: Bemerkungen zur Diracschen Theorie des Positrons. Z. Phys. 90, 209–231 (1934)ADSMATHCrossRefGoogle Scholar
  27. 27.
    Klaus M.: Nonregularity of the Coulomb potential in quantum electrodynamics. Helv. Phys. Acta 53(1), 36–39 (1980)MathSciNetGoogle Scholar
  28. 28.
    Klaus M., Scharf G.: The regular external field problem in quantum electrodynamics. Helv Phys. Acta 50(6), 779–802 (1977)MathSciNetGoogle Scholar
  29. 29.
    Klaus M., Scharf G.: Vacuum polarization in Fock space. Helv. Phys. Acta 50(6), 803–814 (1977)MathSciNetGoogle Scholar
  30. 30.
    Nenciu G., Scharf G.: On regular external fields in quantum electrodynamics. Helv. Phys. Acta 51(3), 412–424 (1978)MathSciNetGoogle Scholar
  31. 31.
    Peskin M.E., Schroeder D.V.: An Introduction to Quantum Field Theory. Addison-Wesley, Reading (1995)Google Scholar
  32. 32.
    Radzikowski M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179(3), 529–553 (1996)MathSciNetADSMATHCrossRefGoogle Scholar
  33. 33.
    Scharf G.: Finite Quantum Electrodynamics. Texts and Monographs in Physics. Springer, Berlin (1989)Google Scholar
  34. 34.
    Schwinger J.: Quantum electrodynamics. I. A covariant formulation. Phys. Rev. 74, 1439–1461 (1948)MathSciNetADSMATHCrossRefGoogle Scholar
  35. 35.
    Serber R.: Linear modifications of the Maxwell field equations. Phys. Rev. 48, 49–54 (1935)ADSMATHCrossRefGoogle Scholar
  36. 36.
    Uehling E.A.: Polarization effects in the positron theory. Phys. Rev. 48, 55–63 (1935)ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Fakultät für MathematikUniversität RegensburgRegensburgGermany

Personalised recommendations