Letters in Mathematical Physics

, Volume 95, Issue 1, pp 27–39 | Cite as

A Note on the Koszul Complex in Deformation Quantization

  • Andrea Ferrario
  • Carlo Antonio Rossi
  • Thomas Willwacher


The aim of this short note is to present a proof of the existence of an A -quasi-isomorphism between the A -S(V *)-\({\wedge(V)}\) -bimodule K, introduced in Calaque et al. (Bimodules and branes in deformation quantization, 2009), and the Koszul complex K(V) of S(V *), viewed as an A -S(V *)-\({\wedge(V)}\) -bimodule, for V a finite-dimensional (complex or real) vector space.

Mathematics Subject Classification (2000)

16E45 81R60 


Koszul duality A-algebras and -bimodules deformation quantization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Calaque, D., Felder, G., Ferrario, A., Rossi, C.A.: Bimodules and branes in deformation quantization (2009). arXiv:0908.2299Google Scholar
  2. 2.
    Calaque, D., Felder, G., Rossi, C.A.: Deformation quantization with generators and relations (2009). arXiv:0911.4377Google Scholar
  3. 3.
    Cattaneo A.S., Felder G.: Coisotropic submanifolds in Poisson geometry and branes in the Poisson sigma model Lett. Math. Phys. 69, 157–175 (2004) MR 2104442 (2005m:81285)MATHMathSciNetADSGoogle Scholar
  4. 4.
    Cattaneo A.S., Felder G.: Relative formality theorem and quantisation of coisotropic submanifolds. Adv. Math. 208(2), 521–548 (2007) MR 2304327 (2008b:53119)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Keller B.: Introduction to A-infinity algebras and modules. Homology Homotopy Appl. 3(1), 1–35 (2001) (electronic). MR 1854636 (2004a:18008a)MATHMathSciNetADSGoogle Scholar
  6. 6.
    Kontsevich M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3), 157–216 (2003) MR 2062626 (2005i:53122)MATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Lefèvre-Hasegawa, K.: Sur les A -catégories. (2003)
  8. 8.
    Shoikhet, B.: Kontsevich formality and PBW algebras (2007). arXiv:0708.1634Google Scholar
  9. 9.
    Shoikhet, B.: Koszul duality in deformation quantization and Tamarkin’s approach to Kontsevich formality. Adv. Math. (2008, to appear). arXiv:0805.0174Google Scholar
  10. 10.
    Willwacher T.: A counterexample to the quantizability of modules. Lett. Math. Phys. 81(3), 265–280 (2007) MR 2355492 (2008j:53160)MATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Andrea Ferrario
    • 1
  • Carlo Antonio Rossi
    • 2
  • Thomas Willwacher
    • 1
  1. 1.Department of MathematicsETH ZurichZurichSwitzerland
  2. 2.Departamento de Matemática, Centro de Análise Matemática, Geometria e Sistemas DinâmicosInstituto Superior TécnicoLisboaPortugal

Personalised recommendations